
Curve Documentation
Release 1.0.0

Curve.fi

Jun 21, 2022

CONTENTS

1 Procotol Overview 3

2 Curve StableSwap Exchange: Overview 5

3 Curve StableSwap: Pools 7
3.1 Plain Pools . 7
3.2 Lending Pools . 10
3.3 Metapools . 12
3.4 Admin Pool Settings . 14

4 Curve StableSwap Exchange: LP Tokens 17
4.1 Curve Token V1 . 17
4.2 Curve Token V2 . 19
4.3 Curve Token V3 . 20

5 Curve StableSwap Exchange: Deposit Contracts 21
5.1 Lending Pool Deposits . 21
5.2 Metapool Deposits . 24

6 Cross Asset Swaps 27
6.1 How it Works . 27
6.2 Exchange API . 28

7 The Curve DAO 33

8 Curve DAO: Vote-Escrowed CRV 35
8.1 Implementation Details . 35
8.2 Querying Balances, Locks and Supply . 35
8.3 Working with Vote-Locks . 36

9 The Curve DAO: Liquidity Gauges and Minting CRV 39
9.1 Implementation Details . 39
9.2 Gauge Types . 41
9.3 LiquidityGauge . 41
9.4 LiquidityGaugeReward . 44
9.5 LiquidityGaugeV2 . 45
9.6 LiquidityGaugeV3 . 47
9.7 GaugeController . 48
9.8 Minter . 50

10 The Curve DAO: Gauges for EVM Sidechains 53

i

10.1 Implementation Details . 53
10.2 RootChainGauge . 54
10.3 ChildChainStreamer . 54
10.4 RewardsOnlyGauge . 54
10.5 RewardClaimer . 55

11 Curve DAO: Fee Collection and Distribution 57
11.1 Withdrawing Admin Fees . 57
11.2 The Burn Process . 57
11.3 Fee Distribution . 61

12 The Curve DAO: Governance and Voting 63
12.1 Creating a Vote . 63
12.2 Inspecting Votes . 64
12.3 Voting . 64
12.4 Executing a Vote . 64

13 Curve DAO: Protocol Ownership 65
13.1 Agents . 65
13.2 PoolProxy . 66
13.3 GaugeProxy . 69

14 Registry 71

15 Registry: Address Provider 73
15.1 How it Works . 73
15.2 View Functions . 74
15.3 Address IDs . 75

16 Registry 77
16.1 Deployment Address . 77
16.2 View Functions . 77

17 Registry: Pool Info 85
17.1 Deployment Address . 85
17.2 View Functions . 85

18 Registry: Exchanges 89
18.1 Deployment Address . 89
18.2 Finding Pools and Swap Rates . 89
18.3 Swapping Tokens . 90

19 MetaPool Factory 91
19.1 Organization . 91

20 Metapool Factory: Deployer and Registry 93
20.1 Deploying a Pool . 93
20.2 Finding Pools . 95
20.3 Getting Pool Info . 95

21 Metapool Factory: Pools 99
21.1 Implementation Contracts . 99
21.2 Getting Pool Info . 99
21.3 Making Exchanges . 100
21.4 Adding and Removing Liquidity . 101
21.5 Claiming Admin Fees . 103

ii

21.6 LP Tokens . 103

22 Metapool Factory: Oracles 105
22.1 Time-Weighted Average Price oracles . 105
22.2 Security . 106

23 Metapool Factory: Deposit Contracts 107
23.1 Deployment Addresses . 107
23.2 Calculating Expected Amounts . 107
23.3 Adding Liquidity . 108
23.4 Removing Liquidity . 108

24 Metapool Factory: Liquidity Migrator 111
24.1 Migrating Liquidity between Pools . 111

25 Contributor Guide 113

26 General 115
26.1 Commit Messages . 115
26.2 Github Standard Fork and Pull Request Workflow . 116
26.3 Creating A New Repository . 119

27 Testing 121
27.1 Curve Contracts . 121

28 Code Style 125
28.1 Vyper Style Guide . 125

29 Python Style Guide 129
29.1 Linting and Pre-Commit Hooks . 129

30 Deployment Addresses 133
30.1 Base Pools . 133
30.2 MetaPools . 134
30.3 Liquidity Gauges . 135
30.4 Curve DAO . 136
30.5 Pool Registry . 138
30.6 MetaPool Factory . 138
30.7 Other Chains . 139

31 Glossary of Terms 147

Index 149

iii

iv

Curve Documentation, Release 1.0.0

Curve is an exchange liquidity pool on Ethereum. Curve is designed for extremely efficient stablecoin trading and low
risk, supplemental fee income for liquidity providers, without an opportunity cost.

This documentation outlines the technical implementation of the core Curve protocol and related smart contracts. It
may be useful for contributors to the Curve codebase, third party integrators, or technically proficient users of the
protocol.

Non-technical users may prefer the Resources section of the main Curve website.

Note: All code starting with $ is meant to be run on your terminal. Code starting with >>> is meant to run inside the
Brownie console.

Note: This project relies heavily upon brownie and the documentation assumes a basic familiarity with it. You may
wish to view the Brownie documentation if you have not used it previously.

CONTENTS 1

www.curve.fi
https://resources.curve.fi/
https://eth-brownie.readthedocs.io/en/stable/

Curve Documentation, Release 1.0.0

2 CONTENTS

CHAPTER

ONE

PROCOTOL OVERVIEW

Curve can be broadly separated into the following categories:

• StableSwap: Exchange contracts and core functionality of the protocol

• The DAO: Protocol governance and value accrual

• The Factory: Permissionless deployment of Curve metapools

• The Registry: Standardized API and on-chain resources to aid 3rd party integrations

3

Curve Documentation, Release 1.0.0

4 Chapter 1. Procotol Overview

CHAPTER

TWO

CURVE STABLESWAP EXCHANGE: OVERVIEW

Curve achieves extremely efficient stablecoin trades by implementing the StableSwap invariant, which has significantly
lower slippage for stablecoin trades than many other prominent invariants (e.g., constant-product). Note that in this
context stablecoins refers to tokens that are stable representations of one another. This includes, for example, USD-
pegged stablecoins (like DAI and USDC), but also ETH and sETH (synthetic ETH) or different versions of wrapped
BTC. For a detailed overview of the StableSwap invariant design, please read the official StableSwap whitepaper.

A Curve pool is essentially a smart contract that implements the StableSwap invariant and therefore contains the logic
for exchanging stable tokens. However, while all Curve pools implement the StableSwap invariant, they may come in
different pool flavors.

In its simplest form, a Curve pool is an implementation of the StableSwap invariant with 2 or more tokens, which can
be referred to as a plain pool. Alternative and more complex pool flavors include pools with lending functionality,
so-called lending pools, as well as metapools, which are pools that allow for the exchange of one or more tokens with
the tokens of one or more underlying base pools.

Curve also integrates with Synthetix to offer cross-asset swaps.

All exchange functionality that Curve supports, as well as noteworthy implementation details, are explained in technical
depth in this section.

5

https://curve.fi/files/stableswap-paper.pdf

Curve Documentation, Release 1.0.0

6 Chapter 2. Curve StableSwap Exchange: Overview

CHAPTER

THREE

CURVE STABLESWAP: POOLS

A Curve pool is a smart contract that implements the StableSwap invariant and thereby allows for the exchange of two
or more tokens.

More broadly, Curve pools can be split into three categories:

• Plain pools: a pool where two or more stablecoins are paired against one another.

• Lending pools: a pool where two or more wrapped tokens (e.g., cDAI) are paired against one another, while
the underlying is lent out on some other protocol.

• Metapools: a pool where a stablecoin is paired against the LP token from another pool.

Source code for Curve pools may be viewed on GitHub.

Warning: The API for plain, lending and metapools applies to all pools that are implemented based on pool
templates. When interacting with older Curve pools, there may be differences in terms of visibility, gas efficiency
and/or variable naming. Furthermore, note that older contracts use vyper 0.1.x... and that the getters generated
for public arrays changed between 0.1.x and 0.2.x to accept uint256 instead of int128 in order to handle the
lookups.

Please do not assume for a Curve pool to implement the API outlined in this section but verify this before interacting
with a pool contract.

For information on code style please refer to the official style guide.

3.1 Plain Pools

The simplest Curve pool is a plain pool, which is an implementation of the StableSwap invariant for two or more tokens.
The key characteristic of a plain pool is that the pool contract holds all deposited assets at all times.

An example of a Curve plain pool is 3Pool, which contains the tokens DAI, USDC and USDT.

Note: The API of plain pools is also implemented by lending and metapools.

The following Brownie console interaction examples are using EURS Pool. The template source code for plain pools
may be viewed on GitHub.

Note: Every pool has the constant private attribute N_COINS, which is the number of coins in the pool. This is referred
to by several pool methods in the API.

7

https://github.com/curvefi/curve-contract/tree/master/contracts
https://github.com/curvefi/curve-contract/tree/master/contracts/pool-templates
https://github.com/curvefi/curve-contract/tree/master/contracts/pool-templates
https://github.com/curvefi/curve-contract/tree/master/contracts/pools/3pool
https://etherscan.io/address/0x0Ce6a5fF5217e38315f87032CF90686C96627CAA
https://github.com/curvefi/curve-contract/blob/master/contracts/pool-templates/base/SwapTemplateBase.vy

Curve Documentation, Release 1.0.0

3.1.1 Getting Pool Info

StableSwap.coins(i: uint256)→ address: view
Getter for the array of swappable coins within the pool.

>>> pool.coins(0)
'0xdB25f211AB05b1c97D595516F45794528a807ad8'

StableSwap.balances(i: uint256)→ uint256: view
Getter for the pool balances array.

>>> pool.balances(0)
2918187395

StableSwap.owner()→ address: view
Getter for the admin/owner of the pool.

>>> pool.owner()
'0xeCb456EA5365865EbAb8a2661B0c503410e9B347'

StableSwap.lp_token()→ address: view
Getter for the LP token of the pool.

>>> pool.lp_token()
'0x194eBd173F6cDacE046C53eACcE9B953F28411d1'

Note: In older Curve pools lp_token may not be public and thus not visible.

StableSwap.A()→ uint256: view
The amplification coefficient for the pool.

>>> pool.A()
100

StableSwap.A_precise()→ uint256: view
The amplification coefficient for the pool not scaled by A_PRECISION (100).

>>> pool.A_precise()
10000

StableSwap.get_virtual_price()→ uint256: view
The current price of the pool LP token relative to the underlying pool assets. Given as an integer with 1e18
precision.

>>> pool.get_virtual_price()
1001692838188850782

StableSwap.fee()→ uint256: view
The pool swap fee, as an integer with 1e10 precision.

>>> pool.fee()
4000000

8 Chapter 3. Curve StableSwap: Pools

Curve Documentation, Release 1.0.0

StableSwap.admin_fee()→ uint256: view
The percentage of the swap fee that is taken as an admin fee, as an integer with with 1e10 precision.

Admin fee is set at 50% (5000000000) and is paid out to veCRV holders (see Fee Collection and Distribution).

>>> pool.admin_fee()
5000000000

3.1.2 Making Exchanges

StableSwap.get_dy(i: int128, j: int128, _dx: uint256)→ uint256: view
Get the amount of coin j one would receive for swapping _dx of coin i.

>>> pool.get_dy(0, 1, 100)
996307731416690125

Note: In the EURS Pool, the decimals for coins(0) and coins(1) are 2 and 18, respectively.

StableSwap.exchange(i: int128, j: int128, _dx: uint256, _min_dy: uint256)→ uint256
Perform an exchange between two coins.

• i: Index value for the coin to send

• j: Index value of the coin to receive

• _dx: Amount of i being exchanged

• _min_dy: Minimum amount of j to receive

Returns the actual amount of coin j received. Index values can be found via the coins public getter method.

>>> expected = pool.get_dy(0, 1, 10**2) * 0.99
>>> pool.exchange(0, 1, 10**2, expected, {"from": alice})

3.1.3 Adding/Removing Liquidity

StableSwap.calc_token_amount(_amounts: uint256[N_COINS], _is_deposit: bool)→ uint256: view

Calculate addition or reduction in token supply from a deposit or withdrawal.

• _amounts: Amount of each coin being deposited

• _is_deposit: Set True for deposits, False for withdrawals

Returns the expected amount of LP tokens received. This calculation accounts for slippage, but not fees.

>>> pool.calc_token_amount([10**2, 10**18], True)
1996887509167925969

StableSwap.add_liquidity(_amounts: uint256[N_COINS], _min_mint_amount: uint256)→ uint256
Deposit coins into the pool.

• _amounts: List of amounts of coins to deposit

• _min_mint_amount: Minimum amount of LP tokens to mint from the deposit

Returns the amount of LP tokens received in exchange for the deposited tokens.

3.1. Plain Pools 9

https://docs.python.org/3.8/library/functions.html#bool

Curve Documentation, Release 1.0.0

StableSwap.remove_liquidity(_amount: uint256, _min_amounts: uint256[N_COINS])→ uint256[N_COINS]
Withdraw coins from the pool.

• _amount: Quantity of LP tokens to burn in the withdrawal

• _min_amounts: Minimum amounts of underlying coins to receive

Returns a list of the amounts for each coin that was withdrawn.

StableSwap.remove_liquidity_imbalance(_amounts: uint256[N_COINS], _max_burn_amount: uint256)→
uint256

Withdraw coins from the pool in an imbalanced amount.

• _amounts: List of amounts of underlying coins to withdraw

• _max_burn_amount: Maximum amount of LP token to burn in the withdrawal

Returns actual amount of the LP tokens burned in the withdrawal.

StableSwap.calc_withdraw_one_coin(_token_amount: uint256, i: int128)→ uint256
Calculate the amount received when withdrawing a single coin.

• _token_amount: Amount of LP tokens to burn in the withdrawal

• i: Index value of the coin to withdraw

StableSwap.remove_liquidity_one_coin(_token_amount: uint256, i: int128, _min_amount: uint256)→
uint256

Withdraw a single coin from the pool.

• _token_amount: Amount of LP tokens to burn in the withdrawal

• i: Index value of the coin to withdraw

• _min_amount: Minimum amount of coin to receive

Returns the amount of coin i received.

3.2 Lending Pools

Curve pools may contain lending functionality, whereby the underlying tokens are lent out on other protocols (e.g.,
Compound or Yearn). Hence, the main difference to a plain pool is that a lending pool does not hold the underlying
token itself, but a wrapped representation of it.

Currently, Curve supports the following lending pools:

• aave: Aave pool, with lending on Aave

• busd: BUSD pool, with lending on yearn.finance

• compound: Compound pool, with lending on Compound

• ib: Iron Bank pool, with lending on Cream

• pax: PAX pool, with lending on yearn.finance

• usdt: USDT pool, with lending on Compound

• y: Y pool, with lending on yearn.finance

An example of a Curve lending pool is Compound Pool, which contains the wrapped tokens cDAI and cUSDC, while
the underlying tokens DAI and USDC are lent out on Compound. Liquidity providers of the Compound Pool therefore
receive interest generated on Compound in addition to fees from token swaps in the pool.

10 Chapter 3. Curve StableSwap: Pools

https://www.curve.fi/aave
https://www.aave.com/
https://www.curve.fi/busd
https://yearn.finance/
https://www.curve.fi/compound
https://compound.finance/
https://www.curve.fi/ib
https://v1.yearn.finance/lending
https://www.curve.fi/pax
https://yearn.finance/
https://www.curve.fi/usdt
https://compound.finance/
https://www.curve.fi/y
https://yearn.finance/
https://github.com/curvefi/curve-contract/tree/master/contracts/pools/compound

Curve Documentation, Release 1.0.0

Implementation of lending pools may differ with respect to how wrapped tokens accrue interest. There are two main
types of wrapped tokens that are used by lending pools:

• cToken-style tokens: These are tokens, such as interest-bearing cTokens on Compound (e.g., cDAI) or on
yTokens on Yearn, where interest accrues as the rate of the token increases.

• aToken-style tokens: These are tokens, such as aTokens on AAVE (e.g., aDAI), where interest accrues as
the balance of the token increases.

The template source code for lending pools may be viewed on GitHub.

Note: Lending pools also implement the API from plain pools.

3.2.1 Getting Pool Info

StableSwap.underlying_coins(i: uint256)→ address: view
Getter for the array of underlying coins within the pool.

>>> lending_pool.coins(0)
'0x5d3a536E4D6DbD6114cc1Ead35777bAB948E3643'
>>> lending_pool.coins(1)
'0x39AA39c021dfbaE8faC545936693aC917d5E7563'

3.2.2 Making Exchanges

Like plain pools, lending pools have the exchange method. However, in the case of lending pools, calling exchange
performs a swap between two wrapped tokens in the pool.

For example, calling exchange on the Compound Pool, would result in a swap between the wrapped tokens cDAI and
cUSDC.

StableSwap.exchange_underlying(i: int128, j: int128, dx: uint256, min_dy: uint256)→ uint256
Perform an exchange between two underlying tokens. Index values can be found via the underlying_coins
public getter method.

• i: Index value for the underlying coin to send

• j: Index value of the underlying coin to receive

• _dx: Amount of i being exchanged

• _min_dy: Minimum amount of j to receive

Returns the actual amount of coin j received.

Note: Older Curve lending pools may not implement the same signature for exchange_underlying. For instance,
Compound pool does not return anything for exchange_underlying and therefore costs more in terms of gas.

3.2. Lending Pools 11

https://github.com/curvefi/curve-contract/blob/master/contracts/pool-templates/y/SwapTemplateY.vy
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/compound/StableSwapCompound.vy#L474

Curve Documentation, Release 1.0.0

3.2.3 Adding/Removing Liquidity

The function signatures for adding and removing liquidity to a lending pool are mostly the same as for a plain pool.
However, for lending pools, liquidity is added and removed in the wrapped token, not the underlying.

In order to be able to add and remove liquidity in the underlying token (e.g., remove DAI from Compound Pool instead
of cDAI) there exists a Deposit<POOL>.vy contract (e.g., (DepositCompound.vy).

Warning: Older Curve lending pools (e.g., Compound Pool) do not implement all plain pool methods for adding
and removing liquidity. For instance, remove_liquidity_one_coin is not implemented by Compound Pool).

Some newer pools (e.g., IB) have a modified signature for add_liquidity and allow the caller to specify whether the
deposited liquidity is in the wrapped or underlying token.

StableSwap.add_liquidity(_amounts: uint256[N_COINS], _min_mint_amount: uint256, _use_underlying:
bool = False)→ uint256

Deposit coins into the pool.

• _amounts: List of amounts of coins to deposit

• _min_mint_amount: Minimum amount of LP tokens to mint from the deposit

• _use_underlying If True, deposit underlying assets instead of wrapped assets.

Returns amount of LP tokens received in exchange for the deposited tokens.

3.3 Metapools

A metapool is a pool where a stablecoin is paired against the LP token from another pool, a so-called base pool.

For example, a liquidity provider may deposit DAI into 3Pool and in exchange receive the pool’s LP token 3CRV. The
3CRV LP token may then be deposited into the GUSD metapool, which contains the coins GUSD and 3CRV, in exchange
for the metapool’s LP token gusd3CRV. The obtained LP token may then be staked in the metapool’s liquidity gauge
for CRV rewards.

Metapools provide an opportunity for the base pool liquidity providers to earn additional trading fees by depositing
their LP tokens into the metapool. Note that the CRV rewards received for staking LP tokens into the pool’s liquidity
gauge may differ for the base pool’s liquidity gauge and the metapool’s liquidity gauge. For details on liquidity gauges
and protocol rewards, please refer to Liquidity Gauges and Minting CRV .

Note: Metapools also implement the API from plain pools.

3.3.1 Getting Pool Information

StableSwap.base_coins(i: uint256)→ address: view

Get the coins of the base pool.

>>> metapool.base_coins(0)
'0x6B175474E89094C44Da98b954EedeAC495271d0F'
>>> metapool.base_coins(1)
'0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48'

(continues on next page)

12 Chapter 3. Curve StableSwap: Pools

https://github.com/curvefi/curve-contract/blob/master/contracts/pools/compound/DepositCompound.vy
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/ib/StableSwapIB.vy
https://docs.python.org/3.8/library/functions.html#bool
https://etherscan.io/address/0xbebc44782c7db0a1a60cb6fe97d0b483032ff1c7#code
https://etherscan.io/address/0x4f062658EaAF2C1ccf8C8e36D6824CDf41167956

Curve Documentation, Release 1.0.0

(continued from previous page)

>>> metapool.base_coins(2)
'0xdAC17F958D2ee523a2206206994597C13D831ec7'

StableSwap.coins(i: uint256)→ address: view
Get the coins of the metapool.

>>> metapool.coins(0)
'0x056Fd409E1d7A124BD7017459dFEa2F387b6d5Cd'
>>> metapool.coins(1)
'0x6c3F90f043a72FA612cbac8115EE7e52BDe6E490'

In this console example, coins(0) is the metapool’s coin (GUSD) and coins(1) is the LP token of the base pool
(3CRV).

StableSwap.base_pool()→ address: view
Get the address of the base pool.

>>> metapool.base_pool()
'0xbEbc44782C7dB0a1A60Cb6fe97d0b483032FF1C7'

StableSwap.base_virtual_price()→ uint256: view
Get the current price of the base pool LP token relative to the underlying base pool assets.

Note that the base pool’s virtual price is only fetched from the base pool if the cached price has expired. A
fetched based pool virtual price is cached for 10 minutes (BASE_CACHE_EXPIRES: constant(int128) = 10
* 60).

>>> metapool.base_virtual_price()
1014750545929625438

StableSwap.base_cache_update()→ uint256: view
Get the timestamp at which the base pool virtual price was last cached.

>>> metapool.base_cache_updated()
1616583340

3.3.2 Making Exchanges

Similar to lending pools, on metapools exchanges can be made either between the coins the metapool actually holds
(another pool’s LP token and some other coin) or between the metapool’s underlying coins. In the context of a metapool,
underlying coins refers to the metapool’s coin and any of the base pool’s coins. The base pool’s LP token is not included
as an underlying coin.

For example, the GUSD metapool would have the following:

• Coins: GUSD, 3CRV (3Pool LP)

• Underlying coins: GUSD, DAI, USDC, USDT

Note: While metapools contain public getters for coins and base_coins, there exists no getter for obtaining a list
of all underlying coins.

3.3. Metapools 13

Curve Documentation, Release 1.0.0

StableSwap.exchange(i: int128, j: int128, _dx: uint256, _min_dy: uint256)→ uint256
Perform an exchange between two (non-underlying) coins in the metapool. Index values can be found via the
coins public getter method.

• i: Index value for the coin to send

• j: Index valie of the coin to receive

• _dx: Amount of i being exchanged

• _min_dy: Minimum amount of j to receive

Returns the actual amount of coin j received.

StableSwap.exchange_underlying(i: int128, j: int128, _dx: uint256, _min_dy: uint256)→ uint256
Perform an exchange between two underlying coins. Index values are the coins followed by the base_coins,
where the base pool LP token is not included as a value.

• i: Index value for the underlying coin to send

• j: Index valie of the underlying coin to recieve

• _dx: Amount of i being exchanged

• _min_dy: Minimum amount of underlying coin j to receive

Returns the actual amount of underlying coin j received.

The template source code for metapools may be viewed on GitHub.

3.4 Admin Pool Settings

The following are methods that may only be called by the pool admin (owner).

Additionally, some admin methods require a two-phase transaction process, whereby changes are committed in a first
transaction and after a forced delay applied via a second transaction. The minimum delay after which a committed
action can be applied is given by the constant pool attribute admin_actions_delay, which is set to 3 days.

3.4.1 Pool Ownership

StableSwap.commit_transfer_ownership(_owner: address)
Initiate an ownership transfer of pool to _owner.

Callable only by the ownership admin. The ownership can not be transferred before
transfer_ownership_deadline, which is the timestamp of the current block delayed by
admin_actions_delay.

StableSwap.apply_transfer_ownership()

Transfers ownership of the pool from current owner to the owner previously set via
commit_transfer_ownership.

Warning: Pool ownership can only be transferred once.

StableSwap.revert_transfer_ownership()

Reverts any previously committed transfer of ownership. This method resets the
transfer_ownership_deadline to 0.

14 Chapter 3. Curve StableSwap: Pools

https://github.com/curvefi/curve-contract/blob/master/contracts/pool-templates/meta/SwapTemplateMeta.vy

Curve Documentation, Release 1.0.0

3.4.2 Amplification Coefficient

The amplification co-efficient (“A”) determines a pool’s tolerance for imbalance between the assets within it. A higher
value means that trades will incur slippage sooner as the assets within the pool become imbalanced.

Note: Within the pools, A is in fact implemented as 1 / A and therefore a higher value implies that the pool will be
more tolerant to slippage when imbalanced.

The appropriate value for A is dependent upon the type of coin being used within the pool.

It is possible to modify the amplification coefficient for a pool after it has been deployed. However, it requires a vote
within the Curve DAO and must reach a 15% quorum.

StableSwap.ramp_A(_future_A: uint256, _future_time: uint256)
Ramp A up or down by setting a new A to take effect at a future point in time.

• _future_A: New future value of A

• _future_time: Timestamp at which new A should take effect

StableSwap.stop_ramp_A()

Stop ramping A up or down and sets A to current A.

3.4.3 Trade Fees

Curve pools charge fees on token swaps, where the fee may differ between pools. An admin fee is charged on the pool
fee. For an overview of how fees are distributed, please refer to Fee Collection and Distribution.

StableSwap.commit_new_fee(_new_fee: uint256, _new_admin_fee: uint256)
Commit new pool and admin fees for the pool. These fees do not take immediate effect.

• _new_fee: New pool fee

• _new_admin_fee: New admin fee (expressed as a percentage of the pool fee)

Note: Both the pool fee and the admin_fee are capped by the constants MAX_FEE and MAX_ADMIN_FEE, respectively.
By default MAX_FEE is set at 50% and MAX_ADMIN_FEE at 100% (which is charged on the MAX_FEE amount).

StableSwap.apply_new_fee()

Apply the previously committed new pool and admin fees for the pool.

Note: Unlike ownership transfers, pool and admin fees may be set more than once.

StableSwap.revert_new_parameters()

Resets any previously committed new fees.

StableSwap.admin_balances(i: uint256)→ uint256
Get the admin balance for a single coin in the pool.

• i: Index of the coin to get admin balance for

Returns the admin balance for coin i.

3.4. Admin Pool Settings 15

Curve Documentation, Release 1.0.0

StableSwap.withdraw_admin_fees()

Withdraws and transfers admin fees of the pool to the pool owner.

StableSwap.donate_admin_fees()

Donate all admin fees to the pool’s liquidity providers.

Note: Older Curve pools do not implement this method.

3.4.4 Kill a Pool

StableSwap.kill_me()

Pause a pool by setting the is_killed boolean flag to True.

This disables the following pool functionality: * add_liquidity * exchange *
remove_liquidity_imbalance * remove_liquidity_one_coin

Hence, when paused, it is only possible for existing LPs to remove liquidity via remove_liquidity.

Note: Pools can only be killed within the first 30 days after deployment.

StableSwap.unkill_me()

Unpause a pool that was previously paused, re-enabling exchanges.

16 Chapter 3. Curve StableSwap: Pools

CHAPTER

FOUR

CURVE STABLESWAP EXCHANGE: LP TOKENS

In exchange for depositing coins into a Curve pool (see Curve Pools), liquidity providers receive pool LP tokens. A
Curve pool LP token is an ERC20 contract specific to the Curve pool. Hence, LP tokens are transferrable. Holders of
pool LP tokens may stake the token into a pool’s liquidity gauge in order to receive CRV token rewards. Alternatively,
if the LP token is supported by a metapool, the token may be deposited into the respective metapool in exchange for
the metapool’s LP token (see here).

The following versions of Curve pool LP tokens exist:

• CurveTokenV1: LP token targetting Vyper ^0.1.0-beta.16

• CurveTokenV2: LP token targetting Vyper ^0.2.0

• CurveTokenV3: LP token targetting Vyper ^0.2.0 with gas optimizations

The version of each pool’s LP token can be found in the Deployment Addresses.

Note: For older Curve pools the token attribute is not always public and a getter has not been explicitly implemented.

4.1 Curve Token V1

The implementation for a Curve Token V1 may be viewed on GitHub.

CurveToken.name()→ string[64]: view
Get the name of the token.

>>> lp_token.name()
'Curve.fi yDAI/yUSDC/yUSDT/yBUSD'

CurveToken.symbol()→ string[32]: view
Get the token symbol.

>>> lp_token.symbol()
'yDAI+yUSDC+yUSDT+yBUSD'

CurveToken.decimals()→ uint256: view
Get the number of decimals for the token.

>>> lp_token.decimals()
18

17

https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV1.vy
https://vyper.readthedocs.io/en/stable/release-notes.html#v0-1-0-beta-16
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy
https://vyper.readthedocs.io/en/stable/release-notes.html#v0-2-1
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy
https://vyper.readthedocs.io/en/stable/release-notes.html#v0-2-1
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV1.vy

Curve Documentation, Release 1.0.0

CurveToken.balanceOf(account: address)→ uint256: view
Get the token balance for an account.

• account: Address to get the token balance for

>>> lp_token.balanceOf("0x69fb7c45726cfe2badee8317005d3f94be838840")
72372801850459006740117197

CurveToken.totalSupply()→ uint256: view
Get the total token supply.

>>> lp_token.totalSupply()
73112516629065063732935484

CurveToken.allowance(_owner: address, _spender: address)→ uint256: view
Get the allowance of an account to spend on behalf of some other account.

• _owner: Account that is paying when _spender spends the allowance

• _spender: Account that can spend up to the allowance

Returns the allowance of _spender for _owner.

CurveToken.transfer(_to: address, _value: uint256)→ bool
Transfer tokens to a specified address.

• _to: Receiver of the tokens

• _value: Amount of tokens to transfer

Returns True if the transfer succeeded.

CurveToken.transferFrom(_from: address, _to: address, _value: uint256)→ bool
Transfer tokens from one address to another. Note that while this function emits a Transfer event, this is not
required as per the specification, and other compliant implementations may not emit the event.

• _from: Address which you want to send tokens from

• _to: Address which you want to transfer to

• _value: Amount of tokens to be transferred

Returns True if transfer succeeded.

CurveToken.approve(_spender: address, _value: uint256)→ bool
Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.

Beware that changing an allowance with this method brings the risk that someone may use both the old and the
new allowance by unfortunate transaction ordering. One possible solution to mitigate this race condition is to
first reduce the spender’s allowance to 0 and set the desired value afterwards (see this GitHub issue).

• _spender: Address which will spend the funds.

• _value: Amount of tokens to be spent.

Returns True if approval succeeded.

Warning: For Curve LP Tokens V1 and V2, non-zero to non-zero approvals are prohibited. Instead,
after every non-zero approval, the allowance for the spender must be reset to 0.

18 Chapter 4. Curve StableSwap Exchange: LP Tokens

https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/functions.html#bool
https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729

Curve Documentation, Release 1.0.0

4.1.1 Minter Methods

The following methods are only callable by the minter (private attribute).

Note: For Curve Token V1, the minter attribute is not public.

CurveToken.mint(_to: address, _value: uint256)
Mint an amount of the token and assign it to an account. This encapsulates the modification of balances such
that the proper events are emitted.

• _to: Address that will receive the created tokens

• _value: Amount that will be created

CurveToken.burn(_value: uint256)
Burn an amount of the token of msg.sender.

• _value: Token amount that will be burned

CurveToken.burnFrom(_to: address, _value: uint256)
Burn an amount of the token from a given account.

• _to: Account whose tokens will be burned

• _value: Amount that will be burned

CurveToken.set_minter(_minter: address)
Set a new minter for the token.

• _minter: Address of the new minter

4.2 Curve Token V2

The implementation for a Curve Token V2 may be viewed on GitHub.

Note: Compared to Curve Token v1, the following changes have been made to the API:

• minter attribute is public and therefore a minter getter has been generated

• name and symbol attributes can be set via set_name

• mint method returns bool

• burnFrom method returns bool

• burn method has been removed

Warning: For Curve LP Tokens V1 and V2, non-zero to non-zero approvals are prohibited. Instead, after every
non-zero approval, the allowance for the spender must be reset to 0.

CurveToken.minter()→ address: view
Getter for the address of the minter of the token.

4.2. Curve Token V2 19

https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy

Curve Documentation, Release 1.0.0

CurveToken.set_name(_name: String[64], _symbol: String[32])
Set the name and symbol of the token.

• _name: New name of token

• _symbol: New symbol of token

This method can only be called by minter.

CurveToken.mint(_to: address, _value: uint256)→ bool
Mint an amount of the token and assign it to an account. This encapsulates the modification of balances such
that the proper events are emitted.

Returns True if not reverted.

CurveToken.burnFrom(_to: address, _value: uint256)→ bool
Burn an amount of the token from a given account.

• _to: Account whose tokens will be burned

• _value: Amount that will be burned

Returns True if not reverted.

4.3 Curve Token V3

The Curve Token V3 is more gas efficient than versions 1 and 2.

Note: Compared to the Curve Token V2 API, there have been the following changes:

• increaseAllowance and decreaseAllowance methods added to mitigate race conditions

The implementation for a Curve Token V3 may be viewed on GitHub.

CurveToken.increaseAllowance(_spender: address, _added_value: uint256)→ bool
Increase the allowance granted to _spender by the msg.sender.

This is alternative to approve that can be used as a mitigation for the potential race condition.

• _spender: Address which will transfer the funds

• _added_value: Amount of to increase the allowance

Returns True if success.

CurveToken.decreaseAllowance(_spender: address, _subtracted_value: uint256)→ bool
Decrease the allowance granted to _spender by the msg.sender.

This is alternative to {approve} that can be used as a mitigation for the potential race condition.

• _spender: Address which will transfer the funds

• _subtracted_value: Amount of to decrease the allowance

Returns True if success.

20 Chapter 4. Curve StableSwap Exchange: LP Tokens

https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/functions.html#bool
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy
https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/functions.html#bool

CHAPTER

FIVE

CURVE STABLESWAP EXCHANGE: DEPOSIT CONTRACTS

Curve pools may rely on a different contract, called a deposit zap for the addition and removal of underlying coins. This
is particularly useful for lending pools, which may only support the addition/removal of wrapped coins. Furthermore,
deposit zaps are also useful for metapools, which do not support the addition/removal of base pool coins.

5.1 Lending Pool Deposits

While Curve lending pools support swaps in both the wrapped and underlying coins, not all lending pools allow liquidity
providers to deposit or withdraw the underlying coin.

For example, the Compound Pool allows swaps between cDai and cUSDC (wrapped coins), as well as swaps between
DAI and USDC (underlying coins). However, liquidity providers are not able to deposit DAI or USDC to the pool directly.
The main reason for why this is not supported by all Curve lending pools lies in the size limit of contracts. Lending
pools may differ in complexity and can end up being very close to the contract byte code size limit. In order to overcome
this restriction, liquidity can be added and removed to and from a lending pool in the underlying coins via a different
contract, called a deposit zap, tailored to lending pools.

For an overview of the Curve lending pool implementation, please refer to the Lending Pool section.

The template source code for a lending pool deposit zap may be viewed on GitHub.

Note: Lending pool deposit zaps may differ in their API. Older pools do not implement the newer API template.

5.1.1 Deposit Zap API (OLD)

Older Curve lending pool deposit zaps do not implement the template API. The deposit zaps which employ an older
API are:

• DepositBUSD: BUSD pool deposit zap

• DepositCompound: Compound pool deposit zap

• DepositPAX: PAX pool deposit zap

• DepositUSDT: USDT pool deposit zap

• DepositY: Y pool deposit zap

While not a lending pool, note that the following contract also implements the newer deposit zap API:

• DepositSUSD: SUSD pool deposit zap

21

https://github.com/ethereum/EIPs/blob/master/EIPS/eip-170.md
https://github.com/curvefi/curve-contract/blob/master/contracts/pool-templates/y/DepositTemplateY.vy
https://github.com/curvefi/curve-contract/blob/master/contracts/pool-templates/y/DepositTemplateY.vy
https://github.com/curvefi/curve-contract/blob/master/contracts/pool-templates/y/DepositTemplateY.vy
https://etherscan.io/address/0xb6c057591e073249f2d9d88ba59a46cfc9b59edb#code
https://etherscan.io/address/0xeb21209ae4c2c9ff2a86aca31e123764a3b6bc06#code
https://etherscan.io/address/0xa50ccc70b6a011cffddf45057e39679379187287#code
https://etherscan.io/address/0xac795d2c97e60df6a99ff1c814727302fd747a80#code
https://etherscan.io/address/0xbbc81d23ea2c3ec7e56d39296f0cbb648873a5d3#readContract
https://etherscan.io/address/0xfcba3e75865d2d561be8d220616520c171f12851#code

Curve Documentation, Release 1.0.0

Get Deposit Zap Information

Note: Getters generated for public arrays changed between Vyper 0.1.x and 0.2.x to accept uint256 instead of
int128 in order to handle the lookups. Older deposit zap contracts (v1) use vyper 0.1.x..., while newer zaps (v2)
use vyper 0.2.x....

The following Brownie console interaction examples are using the Compound Pool Deposit Zap.

DepositZap.curve()→ address: view
Getter for the pool associated with this deposit contract.

>>> zap.curve()
'0xA2B47E3D5c44877cca798226B7B8118F9BFb7A56'

DepositZap.underlying_coins(i: int128)→ address: view
Getter for the array of underlying coins within the associated pool.

• i: Index of the underlying coin for which to get the address

>>> zap.underlying_coins(0)
'0x6B175474E89094C44Da98b954EedeAC495271d0F'
>>> zap.underlying_coins(1)
'0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48'

DepositZap.coins(i: int128)→ address: view
Getter for the array of wrapped coins within the associated pool.

• i: Index of the coin for which to get the address

>>> zap.coins(0)
'0x5d3a536E4D6DbD6114cc1Ead35777bAB948E3643'
>>> zap.coins(1)
'0x39AA39c021dfbaE8faC545936693aC917d5E7563'

DepositZap.token()→ address: view
Getter for the LP token of the associated pool.

>>> zap.token()
'0x845838DF265Dcd2c412A1Dc9e959c7d08537f8a2'

Adding/Removing Liquidity

DepositZap.add_liquidity(uamounts: uint256[N_COINS], min_mint_amount: uint256)
Wrap underlying coins and deposit them in the pool

• uamounts: List of amounts of underlying coins to deposit

• min_mint_amount: Minimum amount of LP token to mint from the deposit

DepositZap.remove_liquidity(_amount: uint256, min_uamounts: uint256[N_COINS])
Withdraw and unwrap coins from the pool.

• _amount: Quantity of LP tokens to burn in the withdrawal

• min_uamounts: Minimum amounts of underlying coins to receive

22 Chapter 5. Curve StableSwap Exchange: Deposit Contracts

https://etherscan.io/address/0xeb21209ae4c2c9ff2a86aca31e123764a3b6bc06

Curve Documentation, Release 1.0.0

DepositZap.remove_liquidity_imbalance(uamounts: uint256[N_COINS], max_burn_amount: uint256)
Withdraw and unwrap coins from the pool in an imbalanced amount.

• uamounts: List of amounts of underlying coins to withdraw

• max_burn_amount: Maximum amount of LP token to burn in the withdrawal

DepositZap.remove_liquidity_one_coin(_token_amount: uint256, i: int128, min_uamount: uint256,
donate_dust: bool = False)

Withdraw and unwrap a single coin from the pool

• _token_amount: Amount of LP tokens to burn in the withdrawal

• i: Index value of the coin to withdraw

• min_uamount: Minimum amount of underlying coin to receive

DepositZap.calc_withdraw_one_coin(_token_amount: uint256, i: int128)→ uint256
Calculate the amount received when withdrawing a single underlying coin.

• _token_amount: Amount of LP tokens to burn in the withdrawal

• i: Index value of the coin to withdraw

DepositZap.withdraw_donated_dust()

Donates any LP tokens of the associated pool held by this contract to the contract owner.

5.1.2 Deposit Zap API (NEW)

Compared to the older deposit zaps, the newer zaps mainly optimize for gas efficiency. The API is only modified in
part, specifically with regards to return values and variable naming.

Get Deposit Zap Information

DepositZap.curve()→ address: view
Getter for the pool associated with this deposit contract.

DepositZap.underlying_coins(i: uint256)→ address: view
Getter for the array of underlying coins within the associated pool.

• i: Index of the underlying coin for which to get the address

DepositZap.coins(i: uint256)→ address: view
Getter for the array of wrapped coins within the associated pool.

• i: Index of the coin for which to get the address

DepositZap.lp_token()→ address: view
Getter for the LP token of the associated pool.

5.1. Lending Pool Deposits 23

https://docs.python.org/3.8/library/functions.html#bool

Curve Documentation, Release 1.0.0

Adding/Removing Liquidity

DepositZap.add_liquidity(_underlying_amounts: uint256[N_COINS], _min_mint_amount: uint256)→
uint256

Wrap underlying coins and deposit them in the pool

• _underlying_amounts: List of amounts of underlying coins to deposit

• _min_mint_amount: Minimum amount of LP tokens to mint from the deposit

Returns the amount of LP token received in exchange for the deposited amounts.

DepositZap.remove_liquidity(_amount: uint256, _min_underlying_amounts: uint256[N_COINS])→
uint256[N_COINS]

Withdraw and unwrap coins from the pool.

• _amount: Quantity of LP tokens to burn in the withdrawal

• _min_underlying_amounts: Minimum amounts of underlying coins to receive

Returns list of amounts of underlying coins that were withdrawn.

DepositZap.remove_liquidity_imbalance(_underlying_amounts: uint256[N_COINS], _max_burn_amount:
uint256)→ uint256[N_COINS]

Withdraw and unwrap coins from the pool in an imbalanced amount. Amounts in _underlying_amounts corre-
spond to withdrawn amounts before any fees charge for unwrapping.

• _underlying_amounts: List of amounts of underlying coins to withdraw

• _max_burn_amount: Maximum amount of LP token to burn in the withdrawal

Returns list of amounts of underlying coins that were withdrawn.

DepositZap.remove_liquidity_one_coin(_amount: uint256, i: int128, _min_underlying_amount: uint256)→
uint256

Withdraw and unwrap a single coin from the pool

• _amount: Amount of LP tokens to burn in the withdrawal

• i: Index value of the coin to withdraw

• _min_underlying_amount: Minimum amount of underlying coin to receive

Returns amount of underlying coin received.

5.2 Metapool Deposits

While Curve metapools support swaps between base pool coins, the base pool LP token and metapool coins, they do
not allow liquidity providers to deposit and/or withdraw base pool coins.

For example, the GUSD metapool is a pool consisting of GUSD and 3CRV (the LP token of the 3Pool) and allows for
swaps between GUSD, DAI, USDC, USDT and 3CRV. However, liquidity providers are not able to deposit DAI, USDC or
USDT to the pool directly. The main reason why this is not possible lies in the maximum byte code size of contracts.
Metapools are complex and can therefore end up being very close to the contract byte code size limit. In order to
overcome this restriction, liquidity can be added and removed to and from a metapool in the base pool’s coins through
a metapool deposit zap.

For an overview of the Curve metapool implementation, please refer to the Metapool section.

The template source code for a metapool deposit “zap” may be viewed on GitHub.

24 Chapter 5. Curve StableSwap Exchange: Deposit Contracts

https://github.com/curvefi/curve-contract/blob/master/contracts/pool-templates/meta/DepositTemplateMeta.vy

Curve Documentation, Release 1.0.0

A list of all deployed metapool deposit zaps can be found here.

Note: Metapool deposit zaps contain the following private and hardcoded constants:

• N_COINS: Number of coins in the metapool (excluding base pool coins)

• BASE_N_COINS: Number of coins in the base pool

• N_ALL_COINS: All coins in the metapool, excluding the base pool LP token (N_COINS + BASE_N_COINS - 1)

5.2.1 Get Deposit Zap Information

DepositZap.pool()→ address: view
Getter for the metapool associated with this deposit contract.

DepositZap.base_pool()→ address: view
Getter for the base pool of the metapool associated with this deposit contract.

DepositZap.base_coins(i: uint256)→ address: view
Getter for the array of the coins of the metapool’s base pool.

• i: Index of the underlying coin for which to get the address

DepositZap.coins(i: uint256)→ address: view
Getter for the array of metapool’s coins.

• i: Index of the coin for which to get the address

DepositZap.token()→ address: view
Getter for the LP token of the associated metapool.

5.2.2 Adding/Removing Liquidity

Note: For methods taking the index argument i, a number in the range from 0 to N_ALL_COINS - 1 is valid. This
refers to all coins apart from the base pool LP token.

DepositZap.add_liquidity(_amounts: uint256[N_ALL_COINS], _min_mint_amount: uint256)→ uint256
Wrap underlying coins and deposit them in the pool.

• _amounts: List of amounts of underlying coins to deposit

• _min_mint_amount: Minimum amount of LP tokens to mint from the deposit

Returns the amount of LP token received in exchange for depositing.

DepositZap.remove_liquidity(_amount: uint256, _min_amounts: uint256[N_ALL_COINS])→
uint256[N_ALL_COINS]

Withdraw and unwrap coins from the pool.

• _amount: Quantity of LP tokens to burn in the withdrawal

• _min_amounts: Minimum amounts of underlying coins to receive

Returns a list of amounts of underlying coins that were withdrawn.

5.2. Metapool Deposits 25

Curve Documentation, Release 1.0.0

DepositZap.remove_liquidity_one_coin(_token_amount: uint256, i: int128, _min_amount: uint256)→
uint256

Withdraw and unwrap a single coin from the metapool.

• _token_amount: Amount of LP tokens to burn in the withdrawal

• i: Index value of the coin to withdraw

• _min_amount: Minimum amount of underlying coin to receive

Returns the amount of the underlying coin received.

DepositZap.remove_liquidity_imbalance(_amounts: uint256[N_ALL_COINS], _max_burn_amount:
uint256)→ uint256

Withdraw coins from the pool in an imbalanced amount

• _amounts: List of amounts of underlying coins to withdraw

• _max_burn_amount: Maximum amount of LP token to burn in the withdrawal

Returns the actual amount of the LP token burned in the withdrawal.

DepositZap.calc_withdraw_one_coin(_token_amount: uint256, i: int128)→ uint256
Calculate the amount received when withdrawing and unwrapping a single coin

• _token_amount: Amount of LP tokens to burn in the withdrawal

• i: Index value of the coin to withdraw (i should be in the range from 0 to N_ALL_COINS - 1, where the
LP token of the base pool is removed).

Returns the amount of coin i received.

DepositZap.calc_token_amount(_amounts: uint256[N_ALL_COINS], _is_deposit: bool)→ uint256
Calculate addition or reduction in token supply from a deposit or withdrawal.

• _amounts: Amount of each underlying coin being deposited

• _is_deposit: Set True for deposits, False for withdrawals

Returns the expected amount of LP tokens received.

26 Chapter 5. Curve StableSwap Exchange: Deposit Contracts

https://docs.python.org/3.8/library/functions.html#bool

CHAPTER

SIX

CROSS ASSET SWAPS

Curve integrates with Synthetix to allow large scale swaps between different asset classes with minimal slippage.
Utilizing Synthetix’ zero-slippage synth conversions and Curve’s deep liquidity and low fees, we can perform fully
on-chain cross asset swaps at scale with a 0.38% fee and minimal slippage.

Cross asset swaps are performed using the SynthSwap contract, deployed to the mainnet at the following address:

0x58A3c68e2D3aAf316239c003779F71aCb870Ee47

Source code and information on the technical implementation are available on Github.

6.1 How it Works

As an example, suppose we have asset A and wish to exchange it for asset D. For this swap to be possible, A and D must
meet the following requirements:

• Must be of different asset classes (e.g. USD, EUR, BTC, ETH)

• Must be exchangeable for a Synthetic asset within one of Curve’s pools (e.g. sUSD, sBTC)

The swap can be visualized as A -> B -> C | C -> D:

1. The initial asset A is exchanged on Curve for B, a synth of the same asset class.

2. B is converted to C, a synth of the same asset class as D.

3. A settlement period passes to account for sudden price movements between B and C.

4. Once the settlement period has passed, C is exchanged on Curve for the desired asset D.

6.1.1 Settler NFTs

Swaps cannot occur atomically due to the Synthetix settlement period. Each unsettled swap is represented by an
ERC721 non-fungible token.

• Each NFT has a unique token ID. Token IDs are never re-used. The NFT is minted upon initiating the swap and
burned when the swap is completed.

• The NFT, and associated right to claim, is fully transferable. It is not possible to transfer the rights to a partial
claim. The approved operator for an NFT also has the right to complete the swap with the underlying asset.

• Token IDs are not sequential. This contract does not support the enumerable ERC721 extension. This decision
is based on gas efficiency.

27

https://etherscan.io/address/0x58A3c68e2D3aAf316239c003779F71aCb870Ee47#code
https://github.com/curvefi/curve-cross-asset-swaps
https://docs.synthetix.io/integrations/settlement/

Curve Documentation, Release 1.0.0

6.1.2 Front-running Considerations

The benefits from these swaps are most apparent when the exchange amount is greater than $1m USD equivalent. As
such, the initiation of a swap gives a strong indicator other market participants that a 2nd post-settlement swap will be
coming. We attempt to minimize the risks from this in several ways:

• C -> D is not declared on-chain when performing the swap from A -> C.

• It is possible to perform a partial swap from C -> D, and to swap into multiple final assets. The NFT persists
until it has no remaining underlying balance of C.

• There is no fixed time frame for the second swap. A user can perform it immediately or wait until market
conditions are more favorable.

• It is possible to withdraw C without performing a second swap.

• It is possible to perform additional A -> B -> C swaps to increase the balance of an already existing NFT.

The range of available actions and time frames make it significantly more difficult to predict the outcome of a swap and
trade against it.

6.2 Exchange API

6.2.1 Finding Swappable Assets

In general, any asset that is within a Curve pool also containing a Synth may be used in a cross asset swap. You can
use the following view methods to confirm whether or not an asset is supported:

StableSwap.synth_pools(_synth: address)→ address: view
Get the address of the Curve pool used to swap a synthetic asset.

If this function returns ZERO_ADDRESS, the given synth cannot be used within cross-asset swaps.

StableSwap.swappable_synth(_token: address)→ address: view
Get the address of the synthetic asset that _token may be directly swapped for.

If this function returns ZERO_ADDRESS, the given token cannot be used within a cross-asset swap.

>>> synth_swap = Contract('0x58A3c68e2D3aAf316239c003779F71aCb870Ee47')
>>> dai = Contract('0x6b175474e89094c44da98b954eedeac495271d0f')

>>> synth_swap.swappable_synth(dai) # returns sUSD
'0x57Ab1ec28D129707052df4dF418D58a2D46d5f51'

>>> synth_swap.synth_pools('0x57ab1ec28d129707052df4df418d58a2d46d5f51') #␣
→˓returns Curve sUSD pool
'0xA5407eAE9Ba41422680e2e00537571bcC53efBfD'

28 Chapter 6. Cross Asset Swaps

Curve Documentation, Release 1.0.0

6.2.2 Estimating Swap Amounts

StableSwap.get_swap_into_synth_amount(_from: address, _synth: address, _amount: uint256)→ uint256:
view

Return the amount received when performing a cross-asset swap.

This method is used to calculate _expected when calling swap_into_synth . You should reduce the value
slightly to account for market movement prior to the transaction confirming.

• _from: Address of the initial asset being exchanged.

• _synth: Address of the synth being swapped into.

• _amount: Amount of _from to swap.

Returns the expected amount of _synth received in the swap.

>>> synth_swap = Contract('0x58A3c68e2D3aAf316239c003779F71aCb870Ee47')
>>> dai = Contract('0x6b175474e89094c44da98b954eedeac495271d0f')
>>> sbtc = Contract('0xfe18be6b3bd88a2d2a7f928d00292e7a9963cfc6')

>>> synthswap.get_swap_into_synth_amount(dai, sbtc, 100000 * 1e18)
2720559215249173192

StableSwap.get_swap_from_synth_amount(_synth: address, _to: address, _amount: uint256)→ uint256:
view

Return the amount received when swapping out of a settled synth.

This method is used to calculate _expected when calling swap_from_synth . You should reduce the value
slightly to account for market movement prior to the transaction confirming.

• _synth: Address of the synth being swapped out of.

• _to: Address of the asset to swap into.

• _amount: Amount of _synth being exchanged.

Returns the expected amount of _to received in the swap.

>>> synth_swap = Contract('0x58A3c68e2D3aAf316239c003779F71aCb870Ee47')
>>> sbtc = Contract('0xfe18be6b3bd88a2d2a7f928d00292e7a9963cfc6')
>>> wbtc = Contract('0x2260fac5e5542a773aa44fbcfedf7c193bc2c599')

>>> synthswap.get_swap_from_synth_amount(sbtc, wbtc, 2720559215249173192)
273663013

StableSwap.get_estimated_swap_amount(_from: address, _to: address, _amount: uint256)→ uint256: view
Estimate the final amount received when swapping between _from and _to.

Note that the actual received amount may be different due to rate changes during the settlement period.

• _from: Address of the initial asset being exchanged.

• _to: Address of the asset to swap into.

• _amount: Amount of _from being exchanged.

Returns the estimated amount of _to received.

6.2. Exchange API 29

Curve Documentation, Release 1.0.0

>>> synth_swap = Contract('0x58A3c68e2D3aAf316239c003779F71aCb870Ee47')
>>> dai = Contract('0x6b175474e89094c44da98b954eedeac495271d0f')
>>> wbtc = Contract('0x2260fac5e5542a773aa44fbcfedf7c193bc2c599')

>>> synthswap.get_estimated_swap_amount(dai, wbtc, 100000 * 1e18)
273663013

Note: This method is for estimating the received amount from a complete swap over two transactions. If _to
is a Synth, you should use get_swap_into_synth_amount instead.

6.2.3 Initiating a Swap

All cross asset swaps are initiated with the following method:

StableSwap.swap_into_synth(_from: address, _synth: address, _amount: uint256, _expected: uint256,
_receiver: address = msg.sender, _existing_token_id: uint256 = 0)→ uint256:
payable

Perform a cross-asset swap between _from and _synth.

Synth swaps require a settlement time to complete and so the newly generated synth cannot immediately be
transferred onward. Calling this function mints an NFT representing ownership of the unsettled synth.

• _from: Address of the initial asset being exchanged. For Ether swaps, use
0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE.

• _synth: Address of the synth being swapped into.

• _amount: Amount of _from to swap. If you are swapping from Ether, you must also send exactly this
much Ether with the transaction. If you are swapping any other asset, you must have given approval to the
swap contract to transfer at least this amount.

• _expected: Minimum amount of _synth to receive.

• _receiver: Address of the recipient of _synth, if not given, defaults to the caller.

• _existing_token_id: Token ID to deposit _synth into. If not given, a new NFT is minted for the
generated synth. When set as non-zero, the token ID must be owned by the caller and must already represent
the same synth as is being swapped into.

Returns the uint256 token ID of the NFT representing the unsettled swap. The token ID is also available from
the emitted TokenUpdate event.

>>> alice = accounts[0]

>>> synth_swap = Contract('0x58A3c68e2D3aAf316239c003779F71aCb870Ee47')
>>> dai = Contract('0x6b175474e89094c44da98b954eedeac495271d0f')
>>> sbtc = Contract('0xfe18be6b3bd88a2d2a7f928d00292e7a9963cfc6')

>>> expected = synth_swap.get_swap_into_synth_amount(dai, sbtc, dai.
→˓balanceOf(alice)) * 0.99

>>> tx = synth_swap.swap_into_synth(dai, sbtc, expected, {'from': alice})
Transaction sent:␣
→˓0x83b311af19be08b8ec6241c3e834ccdf3b22586971de82a76a641e43bdf2b3ee

(continues on next page)

30 Chapter 6. Cross Asset Swaps

https://docs.synthetix.io/integrations/settlement/

Curve Documentation, Release 1.0.0

(continued from previous page)

Gas price: 20 gwei Gas limit: 1200000 Nonce: 5

>>> tx.events['TokenUpdate']['token_id']
2423994707895209386239865227163451060473904619065

6.2.4 Getting Info about an Unsettled Swap

StableSwap.token_info(_token_id: uint256)→ address, address, uint256, uint256: view
Get information about the underlying synth represented by an NFT.

• _token_id: NFT token ID to query info about. Reverts if the token ID does not exist.

Returns the owner of the NFT, the address of the underlying synth, the balance of the underlying synth, and the
current maximum number of seconds until the synth may be settled.

>>> synth_swap = Contract('0x58A3c68e2D3aAf316239c003779F71aCb870Ee47')
>>> synthswap.token_info(2423994707895209386239865227163451060473904619065).
→˓dict()
{

'owner': "0xEF422dBBF46120dE627fFb913C9AFaD44c735618",
'synth': "0x57Ab1ec28D129707052df4dF418D58a2D46d5f51",
'time_to_settle': 0,
'underlying_balance': 1155647333395694644849

}

6.2.5 Completing a Swap

Once the settlement period on a swap has finished, any of the following methods may be used to complete the swap.

StableSwap.swap_from_synth(_token_id: uint256, _to: address, _amount: uint256, _expected: uint256,
_receiver: address = msg.sender)→ uint256: nonpayable

Swap the underlying synth represented by an NFT into another asset.

Callable by the owner or operator of _token_id after the synth settlement period has passed. If _amount is
equal to the total remaining balance of the synth represented by the NFT, the NFT is burned.

• _token_id: The identifier for an NFT.

• _to: Address of the asset to swap into.

• _amount: Amount of the underlying synth to swap.

• _expected: Minimum amount of _to to receive.

• _receiver: Address to send the final received asset to. If not given, defaults to the caller.

Returns the remaining balance of the underlying synth within the active NFT.

>>> wbtc = Contract('0x2260fac5e5542a773aa44fbcfedf7c193bc2c599')

>>> amount = synth_swap.token_info(token_id)['underlying_balance']
>>> expected = swynth_swap.get_swap_from_synth_amount(sbtc, wbtc, amount) *␣
→˓0.99

(continues on next page)

6.2. Exchange API 31

Curve Documentation, Release 1.0.0

(continued from previous page)

>>> synth_swap.swap_from_synth(token_id, wbtc, amount, expected, {'from':␣
→˓alice})
Transaction sent:␣
→˓0x83b311af19be08b8ec6241c3e834ccdf3b22586971de82a76a641e43bdf2b3ee
Gas price: 20 gwei Gas limit: 800000 Nonce: 6

StableSwap.withdraw(_token_id: uint256, _amount: uint256, _receiver: address = msg.sender)→ uint256:
nonpayable

Withdraw the underlying synth represented by an NFT.

Callable by the owner or operator of _token_id after the synth settlement period has passed. If _amount is
equal to the total remaining balance of the synth represented by the NFT, the NFT is burned.

• _token_id: The identifier for an NFT.

• _amount: Amount of the underlying synth to withdraw.

• _receiver: Address of the recipient of the withdrawn synth. If not given, defaults to the caller.

Returns the remaining balance of the underlying synth within the active NFT.

>>> amount = synth_swap.token_info(token_id)['underlying_balance']

>>> synth_swap.withdraw(token_id, amount, {'from': alice})
Transaction sent:␣
→˓0x83b311af19be08b8ec6241c3e834ccdf3b22586971de82a76a641e43bdf2b3ee
Gas price: 20 gwei Gas limit: 800000 Nonce: 6

StableSwap.settle(_token_id: uint256)→ bool: nonpayable
Settle the synth represented in an NFT. Note that settlement is performed when swapping or withdrawing, there
is no requirement to call this function separately.

• _token_id The identifier for an NFT.

Returns True.

32 Chapter 6. Cross Asset Swaps

CHAPTER

SEVEN

THE CURVE DAO

Curve DAO consists of multiple smart contracts connected by Aragon. Interaction with Aragon occurs through a
modified implementation of the Aragon Voting App. Aragon’s standard one token, one vote method is replaced with a
weighting system based on locking tokens.

Curve DAO has a token (CRV) which is used for both governance and value accrual.

Source code for the Curve DAO can be found on Github.

33

https://github.com/aragon/aragonOS
https://github.com/curvefi/curve-aragon-voting
https://github.com/aragon/aragon-apps/tree/master/apps/voting
https://etherscan.io/token/0xd533a949740bb3306d119cc777fa900ba034cd52
https://github.com/curvefi/curve-dao-contracts

Curve Documentation, Release 1.0.0

34 Chapter 7. The Curve DAO

CHAPTER

EIGHT

CURVE DAO: VOTE-ESCROWED CRV

Participating in Curve DAO governance requires that an account have a balance of vote-escrowed CRV (veCRV). veCRV
is a non-standard ERC20 implementation, used within the Aragon DAO to determine each account’s voting power.

veCRV is represented by the VotingEscrow contract, deployed to the Ethereum mainnet at:

0x5f3b5DfEb7B28CDbD7FAba78963EE202a494e2A2

veCRV cannot be transferred. The only way to obtain veCRV is by locking CRV. The maximum lock time is four years.
One CRV locked for four years provides an initial balance of one veCRV.

A user’s veCRV balance decays linearly as the remaining time until the CRV unlock decreases. For example, a balance
of 4000 CRV locked for one year provides the same amount of veCRV as 2000 CRV locked for two years, or 1000 CRV
locked for four years.

8.1 Implementation Details

User voting power 𝑤𝑖 is linearly decreasing since the moment of lock. So does the total voting power 𝑊 . In order to
avoid periodic check-ins, every time the user deposits, or withdraws, or changes the locktime, we record user’s slope
and bias for the linear function 𝑤𝑖(𝑡) in the public mapping user_point_history. We also change slope and bias for
the total voting power 𝑊 (𝑡) and record it in point_history. In addition, when a user’s lock is scheduled to end, we
schedule change of slopes of 𝑊 (𝑡) in the future in slope_changes. Every change involves increasing the epoch by
1.

This way we don’t have to iterate over all users to figure out, how much should 𝑊 (𝑡) change by, neither we require
users to check in periodically. However, we limit the end of user locks to times rounded off by whole weeks.

Slopes and biases change both when a user deposits and locks governance tokens, and when the locktime expires. All
the possible expiration times are rounded to whole weeks to make number of reads from blockchain proportional to
number of missed weeks at most, not number of users (which is potentially large).

8.2 Querying Balances, Locks and Supply

VotingEscrow.balanceOf(addr: address, _t: uint256 = block.timestamp)→ uint256
Get the current voting power for an address.

• addr: User wallet address

>>> vote_escrow = Contract('0x5f3b5DfEb7B28CDbD7FAba78963EE202a494e2A2')

>>> vote_escrow.balanceOf('0xF89501B77b2FA6329F94F5A05FE84cEbb5c8b1a0')
5464191329389144503333564

35

https://etherscan.io/address/0x5f3b5dfeb7b28cdbd7faba78963ee202a494e2a2

Curve Documentation, Release 1.0.0

VotingEscrow.balanceOfAt(addr: address, _block: uint256)→ uint256
Measure the voting power of an address at a historic block height.

This function is taken from the MiniMe ERC20 implementation and is required for compatibility with Aragon.

• addr: User wallet address

• _block: Block to calculate the voting power at

>>> height = len(chain) - 10000 # ten thousand blocks prior to the␣
→˓current block
>>> vote_escrow.balanceOfAt('0xF89501B77b2FA6329F94F5A05FE84cEbb5c8b1a0',
→˓ height)
5470188311017698310628752

VotingEscrow.totalSupply()→ uint256
Calculate the current total voting power.

>>> vote_escrow.totalSupply()
102535077684041114817306735

VotingEscrow.totalSupplyAt(_block: uint256)→ uint256
Calculate the total voting power at a historic block height.

• _block Block to calculate the total voting power at.

>>> height = len(chain) - 10000 # ten thousand blocks prior to the␣
→˓current block
>>> vote_escrow.totalSupplyAt(height)
101809514082846807874928588

VotingEscrow.locked(_user: address)
Get information about the current CRV lock for an address.

• _user: Address to query.

Returns amount of CRV currently locked, and the epoch time that the lock expires.

>>> vote_escrow.locked('0xF89501B77b2FA6329F94F5A05FE84cEbb5c8b1a0').dict()
{

'amount': 5664716612269392397633736,
'end': 1736985600

}

8.3 Working with Vote-Locks

VotingEscrow.create_lock(_value: uint256, _unlock_time: uint256)
Deposit CRV into the contract and create a new lock.

Prior to calling this function, the contract must be approved to transfer at least _value CRV. A new lock cannot
be created when an existing lock already exists.

• _value: The amount of CRV to deposit.

• _unlock_time Epoch time when tokens unlock. This value is rounded down to the nearest whole week.
The maximum duration for a lock is four years.

36 Chapter 8. Curve DAO: Vote-Escrowed CRV

https://github.com/Giveth/minime

Curve Documentation, Release 1.0.0

>>> import time
>>> crv = Contract('0xd533a949740bb3306d119cc777fa900ba034cd52')
>>> vote_escrow = Contract('0x5f3b5DfEb7B28CDbD7FAba78963EE202a494e2A2')

>>> crv.approve(vote_escrow, 2**256-1, {'from': alice})
Transaction sent:␣
→˓0xa7978a8d7fc185d9194bd3c2fa1801ccc57ad4edcfcaff7b5dab1c9101b78cf9
Gas price: 20.0 gwei Gas limit: 56299 Nonce: 23

>>> amount = crv.balanceOf(alice)
>>> unlock_time = int(time.time() + 86400 * 365 * 4)
>>> vote_escrow.create_lock(amount, unlock_time, {'from': alice})
Transaction sent:␣
→˓0xa7978a8d7fc185d9194bd3c2fa1801ccc57ad4edcfcaff283958329291b78cf1
Gas price: 20.0 gwei Gas limit: 307234 Nonce: 24

VotingEscrow.increase_amount(_value: uint256)
Deposit additional CRV into an existing lock.

• _value: The amount of CRV to deposit.

>>> amount = crv.balanceOf(alice)
>>> vote_escrow.increase_amount(amount, {'from': alice})
Transaction sent:␣
→˓0xa7978a8d7fc185d9194bd3c2fa1801ccc57ad4edcfcaff7b5dab1c9101b78cf9
Gas price: 20.0 gwei Gas limit: 156299 Nonce: 24

VotingEscrow.increase_unlock_time(_unlock_time: uint256)
Extend the unlock time on a lock that already exists.

• _unlock_time New epoch time for unlocking. This value is rounded down to the nearest whole week.
The maximum duration for a lock is four years.

>>> unlock_time = int(time.time() + 86400 * 365 * 4)
>>> vote_escrow.increase_unlock_time(unlock_time, {'from': alice})
Transaction sent:␣
→˓0xa7978a8d7fc185d9194bd3c2fa1801ccc57ad4edcfcaff7b5dab1c9101b78cf9
Gas price: 20.0 gwei Gas limit: 282041 Nonce: 24

VotingEscrow.withdraw()

Withdraw deposited CRV tokens once a lock has expired.

>>> vote_escrow.withdraw({'from': alice})
Transaction sent:␣
→˓0xa7978a8d7fc185d9194bd3c2fa1801ccc57ad4edcfcaff7b5dab1c9101b78cf9
Gas price: 20.0 gwei Gas limit: 178629 Nonce: 24

8.3. Working with Vote-Locks 37

Curve Documentation, Release 1.0.0

38 Chapter 8. Curve DAO: Vote-Escrowed CRV

CHAPTER

NINE

THE CURVE DAO: LIQUIDITY GAUGES AND MINTING CRV

Curve incentivizes liquidity providers with the CRV, the protocol governance token. Allocation, distribution and mint-
ing of CRV are managed via several related DAO contracts:

• LiquidityGauge: Measures liquidity provided by users over time, in order to distribute CRV and other rewards

• GaugeController: Central controller that maintains a list of gauges, weights and type weights, and coordinates
the rate of CRV production for each gauge

• Minter: CRV minting contract, generates new CRV according to liquidity gauges

9.1 Implementation Details

9.1.1 CRV Inflation

CRV follows a piecewise linear inflation schedule. The inflation is reduced by 21/4 each year. Each time the inflation
reduces, a new mining epoch starts.

The initial supply of CRV is 1.273 billion tokens, which is 42% of the eventual 𝑡 → ∞” supply of ≈ 3.03 billion
tokens. All of these initial tokens are gradually vested (with every block). The initial inflation rate which supports the
above inflation schedule is 𝑟 = 22.0% (279.6 millions per year). All of the inflation is distributed to Curve liquidity
providers, according to measurements taken by the gauges. During the first year, the approximate inflow into circulating
supply is 2 million CRV per day. The initial circulating supply is 0.

9.1.2 Liquidity Gauges

Inflation is directed to users who provide liquidity within the protocol. This usage is measured via “Liquidity Gauge”
contracts. Each pool has an individual liquidity gauge. The Gauge Controller maintains a list of gauges and their types,
with the weights of each gauge and type.

To measure liquidity over time, the user deposits their LP tokens into the liquidity gauge. Coin rates which the gauge
is getting depends on current inflation rate, gauge weight, and gauge type weights. Each user receives a share of newly
minted CRV proportional to the amount of LP tokens locked. Additionally, rewards may be boosted by up to factor of
2.5 if the user vote-locks tokens for Curve governance in the Voting Escrow contract.

Suppose we have the inflation rate 𝑟 changing with every epoch (1 year), gauge weight 𝑤𝑔 and gauge type weight 𝑤𝑡.
Then, all the gauge handles the stream of inflation with the rate 𝑟′ = 𝑤𝑔𝑤𝑡𝑟 which it can update every time 𝑤𝑔, 𝑤𝑡, or
mining epoch changes.

To calculate a user’s share of 𝑟′, we must calculate the integral: I𝑢 =
∫︀ 𝑟′(𝑡) 𝑏𝑢(𝑡)

𝑆(𝑡) 𝑑𝑡,where 𝑏𝑢(𝑡) is the balance supplied
by the user (measured in LP tokens) and 𝑆(𝑡) is total liquidity supplied by users, depending on the time 𝑡; the value 𝐼𝑢

39

Curve Documentation, Release 1.0.0

gives the amount of tokens which the user has to have minted to them. The user’s balance 𝑏𝑢 changes every time the
user u makes a deposit or withdrawal, and 𝑆 changes every time _any_ user makes a deposit or withdrawal (so S can
change many times in between two events for the user 𝑢”. In the liquidity gauge contract, the vaule of 𝐼𝑢 is recorded
per-user in the public integrate_fraction mapping.

To avoid requiring that all users to checkpoint periodically, we keep recording values of the following integral (named
integrate_inv_supply in the contract):

I𝑖𝑠(𝑡) =
∫︀ 𝑡

0
𝑟′(𝑡)
𝑆(𝑡) 𝑑𝑡.

The value of 𝐼𝑖𝑠 is recorded at any point any user deposits or withdraws, as well as every time the rate 𝑟′ changes (either
due to weight change or change of mining epoch).

When a user deposits or withdraws, the change in 𝐼𝑢 can be calculated as the current (before user’s action)
value of 𝐼𝑖𝑠 multiplied by the pre-action user’s balance, and sumed up across the user’s balances: I𝑢(𝑡𝑘) =∑︀

𝑘 𝑏𝑢(𝑡𝑘) [𝐼𝑖𝑠(𝑡𝑘)− 𝐼𝑖𝑠(𝑡𝑘−1)] . The per-user integral is possible to repalce with this sum because 𝑏𝑢(𝑡) changed
for all times between 𝑡𝑘−1 and 𝑡𝑘.

9.1.3 Boosting

In order to incentivize users to participate in governance, and additionally create stickiness for liquidity, we implement
the following mechanism. A user’s balance, counted in the liquidity gauge, gets boosted by users locking CRV tokens
in Voting Escrow contract, depending on their vote weight 𝑤𝑖: 𝑏*𝑢 = min

(︀
0.4 𝑏𝑢 + 0.6𝑆 𝑤𝑖

𝑊 , 𝑏𝑢
)︀
. The value of 𝑤𝑖 is

taken at the time the user performs any action (deposit, withdrawal, withdrawal of minted CRV tokens) and is applied
until the next action this user performs.

If no users vote-lock any CRV (or simply don’t have any), the inflation will simply be distributed proportionally to the
liquidity 𝑏𝑢 each one of them provided. However, if a user stakes enough CRV, they are able to boost their stream of
CRV by up to factor of 2.5 (reducing it slightly for all users who are not doing that).

Implementation details are such that a user gets the boost at the time of the last action or checkpoint. Since the voting
power decreases with time, it is favorable for users to apply a boost and do no further actions until they vote-lock more
tokens. However, once the vote-lock expires, everyone can “kick” the user by creating a checkpoint for that user and,
essentially, resetting the user to no boost if they have no voting power at that point already.

Finally, the gauge is supposed to not miss a full year of inflation (e.g. if there were no interactions with the guage for
the full year). If that ever happens, the abandoned gauge gets less CRV.

9.1.4 Gauge Weight Voting

Users can allocate their veCRV towards one or more liquidity gauges. Gauges receive a fraction of newly minted CRV
tokens proportional to how much veCRV the gauge is allocated. Each user with a veCRV balance can change their
preference at any time.

When a user applies a new weight vote, it gets applied at the start of the next epoch week. The weight vote for any one
gauge cannot be changed more often than once in 10 days.

40 Chapter 9. The Curve DAO: Liquidity Gauges and Minting CRV

Curve Documentation, Release 1.0.0

9.1.5 The Gauge Controller

The “Gauge Controller” maintains a list of gauges and their types, with the weights of each gauge and type. In order
to implement weight voting, GaugeController has to include parameters handling linear character of voting power
each user has.

GaugeController records points (bias + slope) per gauge in vote_points, and _scheduled_ changes in biases and
slopes for those points in vote_bias_changes and vote_slope_changes. New changes are applied at the start of
each epoch week.

Per-user, per-gauge slopes are stored in vote_user_slopes, along with the power the user has used and the time their
vote-lock ends.

The totals for slopes and biases for vote weight per gauge, and sums of those per type, are scheduled / recorded for the
next week, as well as the points when voting power gets to 0 at lock expiration for some of users.

When a user changes their gauge weight vote, the change is scheduled for the next epoch week, not immediately. This
reduces the number of reads from storage which must to be performed by each user: it is proportional to the number
of weeks since the last change rather than the number of interactions from other users.

9.2 Gauge Types

Each liquidity gauge is assigned a type within the gauge controller. Grouping gauges by type allows the DAO to adjust
the emissions according to type, making it possible to e.g. end all emissions for a single type.

Currently active gauge types are as follows:

• Ethereum (stableswap pools): 0

• Fantom: 1

• Polygon (Matic): 2

• xDai: 4

• Ethereum (crypto pools): 5

• Arbitrum 7

• Avalanche 8

• Harmony 9

Types 3 and 6 have been deprecated.

9.3 LiquidityGauge

Each pool has a unique liquidity gauge. Deployment addresses can be found in the addresses reference section of the
documentation.

There are several versions of liquidity gauge contracts in use. Source code for these contracts is available on Github.

9.2. Gauge Types 41

https://github.com/curvefi/curve-dao-contracts/tree/master/contracts/gauges

Curve Documentation, Release 1.0.0

9.3.1 Querying Gauge Information

LiquidityGauge.lp_token()→ address: view
The address of the LP token that may be deposited into the gauge.

LiquidityGauge.totalSupply -> uint256: view

The total amount of LP tokens that are currently deposited into the gauge.

LiquidityGauge.working_supply()→ uint256: view
The “working supply” of the gauge - the effective total LP token amount after all deposits have been boosted.

9.3.2 Querying User Information

LiquidityGauge.balanceOf(addr: address)→ uint256: view
The current amount of LP tokens that addr has deposited into the gauge.

LiquidityGauge.working_balances(addr: address)→ uint256: view
The “working balance” of a user - their effective balance after boost has been applied.

LiquidityGauge.claimable_tokens(addr: address)→ uint256: nonpayable
The amount of currently mintable CRV for addr from this gauge.

Note: Calling this function modifies the state. Off-chain integrators can call it as though it were a view function,
however on-chain integrators must use it as nonpayable or the call will revert.

>>> gauge.claimable_tokens.call(alice)
3849184923983248t5273

LiquidityGauge.integrate_fraction(addr: address)→ uint256: view
The total amount of CRV, both mintable and already minted, that has been allocated to addr from this gauge.

9.3.3 Checkpoints

LiquidityGauge.user_checkpoint(addr: address)→ bool: nonpayable
Record a checkpoint for addr, updating their boost.

Only callable by addr or Minter - you cannot trigger a checkpoint for another user.

LiquidityGauge.kick(addr: address): nonpayable

Trigger a checkpoint for addr. Only callable when the current boost for addr is greater than it should be, due
to an expired veCRV lock.

42 Chapter 9. The Curve DAO: Liquidity Gauges and Minting CRV

https://vyper.readthedocs.io/en/stable/control-structures.html#mutability

Curve Documentation, Release 1.0.0

9.3.4 Deposits and Withdrawals

LiquidityGauge.deposit(amount: uint256, receiver: address = msg.sender): nonpayable

Deposit LP tokens into the gauge.

Prior to depositing, ensure that the gauge has been approved to transfer amount LP tokens on behalf of the caller.

• amount: Amount of tokens to deposit

• receiver: Address to deposit for. If not given, defaults to the caller. If specified, the caller must have
been previous approved via approved_to_deposit

>>> lp_token = Contract(gauge.lp_token())
>>> balance = lp_token.balanceOf(alice)

>>> lp_token.approve(gauge, balance, {'from': alice})
Transaction sent:␣
→˓0xa791801ccc57ad4edcfcaff7b5dab1c9101b78cf978a8d7fc185d9194bd3c2fa
Gas price: 20.0 gwei Gas limit: 56299 Nonce: 23

>>> gauge.deposit(balance, {'from': alice})
Transaction sent:␣
→˓0xd4edcfcaff7b5dab1c9101b78cf978a8d7fc185d9194bd3c2faa791801ccc57a
Gas price: 20.0 gwei Gas limit: 187495 Nonce: 24

LiquidityGauge.withdraw(amount: uint256): nonpayable

Withdraw LP tokens from the gauge.

• amount: Amount of tokens to withdraw

>>> balance = gauge.balanceOf(alice)
>>> gauge.withdraw(balance, {'from': alice})
Transaction sent:␣
→˓0x1b78cf978a8d7fc185d9194bd3c2faa791801ccc57ad4edcfcaff7b5dab1c910
Gas price: 20.0 gwei Gas limit: 217442 Nonce: 25

LiquidityGauge.approved_to_deposit(caller: address, receiver: address)→ bool: view

Return the approval status for caller to deposit LP tokens into the gauge on behalf of receiver.

LiquidityGauge.set_approve_deposit(depositor: address, can_deposit: bool): nonpayable

Approval or revoke approval for another address to deposit into the gauge on behalf of the caller.

• depositor: Address to set approval for

• can_deposit: Boolean - can this address deposit on behalf of the caller?

>>> gauge.approved_to_deposit(bob, alice)
False

>>> gauge.set_approve_deposit(bob, True, {'from': alice})
Transaction sent:␣
→˓0xc185d9194bd3c2faa791801ccc57ad4edcfcaff7b5dab1c9101b78cf978a8d7f
Gas price: 20.0 gwei Gas limit: 47442 Nonce: 26

>>> gauge.approved_to_deposit(bob, alice)
True

9.3. LiquidityGauge 43

Curve Documentation, Release 1.0.0

9.3.5 Killing the Gauge

LiquidityGauge.kill_me(): nonpayable

Toggle the killed status of the gauge.

This function may only be called by the ownership or emergency admins within the DAO.

A gauge that has been killed is unable to mint CRV. Any gauge weight given to a killed gauge effectively burns
CRV. This should only be done in a case where a pool had to be killed due to a security risk, but the gauge was
already voted in.

LiquidityGauge.is_killed()→ bool: view
The current killed status of the gauge.

9.4 LiquidityGaugeReward

Along with measuring liquidity for CRV distribution, LiquidityGaugeReward stakes LP tokens into an SNX staking
rewards contract and handles distribution of an the additional rewards token. Rewards gauges include the full API of
LiquidityGauge, with the following additional methods:

9.4.1 Querying Reward Information

LiquidityGaugeReward.reward_contract()→ address: view
The address of the staking rewards contract that LP tokens are staked into.

LiquidityGaugeReward.rewarded_token()→ address: view
The address of the reward token being received from reward_contract.

LiquidityGaugeReward.is_claiming_rewards()→ bool: view
Boolean indicating if rewards are currently being claimed by this gauge.

9.4.2 Calculating Claimable Rewards

Note: There is no single function that returns the currently claimable reward amount. To calculate:

>>> gauge.claimable_reward(alice) - gauge.claimed_rewards_for(alice)
97924174626247611803

LiquidityGaugeReward.claimable_reward(addr: address)→ uint256: view
The total earned reward tokens, both claimed and unclaimed, for addr.

LiquidityGaugeReward.claimed_rewards_for(addr: address)→ uint256: view
The number of reward tokens already claimed for addr.

44 Chapter 9. The Curve DAO: Liquidity Gauges and Minting CRV

https://github.com/Synthetixio/synthetix/blob/master/contracts/StakingRewards.sol
https://github.com/Synthetixio/synthetix/blob/master/contracts/StakingRewards.sol
https://github.com/Synthetixio/synthetix/blob/master/contracts/StakingRewards.sol

Curve Documentation, Release 1.0.0

9.4.3 Claiming Rewards

LiquidityGaugeReward.claim_rewards(addr: address = msg.sender): nonpayable

Claim reward tokens for an address. If addr is not specified, defaults to the caller.

9.5 LiquidityGaugeV2

The v2 liquidity gauge adds a full ERC20 interface to the gauge, tokenizing deposits so they can be directly transferred
between accounts without having to withdraw and redeposit. It also improves flexibility for onward staking, allowing
staking to be enabled or disabled at any time and handling up to eight reward tokens at once.

9.5.1 Querying Reward Information

LiquidityGaugeV2.reward_contract()→ address: view
The address of the staking rewards contract that LP tokens are staked into.

LiquidityGaugeV2.rewarded_tokens(idx: uint256)→ address: view
Getter for an array of rewarded tokens currently being received by reward_contract.

The contract is capable of handling up to eight reward tokens at once - if there are less than eight currently active,
some values will return as ZERO_ADDRESS.

9.5.2 Approvals and Transfers

LiquidityGaugeV2.transfer(_to: address, _value: uint256)→ bool:
Transfers gauge deposit from the caller to _to.

This is the equivalent of calling withdraw(_value) followed by deposit(_value, _to). Pending reward
tokens for both the sender and receiver are also claimed during the transfer.

Returns True on success. Reverts on failure.

LiquidityGaugeV2.transferFrom(_from: address, _to: address, _value: uint256)→ bool:
Transfers a gauge deposit between _from and _to.

The caller must have previously been approved to transfer at least _value tokens on behalf of _from. Pending
reward tokens for both the sender and receiver are also claimed during the transfer.

Returns True on success. Reverts on failure.

LiquidityGaugeV2.approve(_spender: address, _value: uint256)→ bool:
Approve the passed address to transfer the specified amount of tokens on behalf of the caller.

Returns True on success. Reverts on failure.

9.5. LiquidityGaugeV2 45

https://github.com/Synthetixio/synthetix/blob/master/contracts/StakingRewards.sol

Curve Documentation, Release 1.0.0

9.5.3 Checking and Claiming Rewards

Note: Rewards are claimed automatically each time a user deposits or withdraws from the gauge, and on gauge token
transfers.

LiquidityGaugeV2.claimable_reward(_addr: address, _token: address)→ uint256: nonpayable
Get the number of claimable reward tokens for a user.

Note: This function determines the claimable reward by actually claiming and then returning the received
amount. As such, it is state changing and only of use to off-chain integrators. The mutability should be manually
changed to view within the ABI.

• _addr Account to get reward amount for

• _token Token to get reward amount for

Returns the number of tokens currently claimable for the given address.

LiquidityGaugeV2.claim_rewards(_addr: address = msg.sender): nonpayable

Claim all available reward tokens for _addr. If no address is given, defaults to the caller.

LiquidityGaugeV2.claim_historic_rewards(_reward_tokens: address[8], _addr: address = msg.
sender): nonpayable

Claim reward tokens available from a previously-set staking contract.

• _reward_tokens: Array of reward token addresses to claim

• _addr: Address to claim for. If none is given, defaults to the caller.

9.5.4 Setting the Rewards Contract

LiquidityGaugeV2.set_rewards(_reward_contract: address, _sigs: bytes32,
_reward_tokens: address[8]): nonpayable

Set the active reward contract.

• _reward_contract: Address of the staking contract. Set to ZERO_ADDRESS if staking rewards are being
removed.

• _sigs: A concatenation of three four-byte function signatures: stake, withdraw and getReward. The
signatures are then right padded with empty bytes. See the example below for more information on how to
prepare this data.

• _reward_tokens: Array of rewards tokens received from the staking contract.

This action is only possible via the contract admin. It cannot be called when the gauge has no deposits. As a
safety precaution, this call validates all the signatures with the following sequence of actions:

1. LP tokens are deposited into the new staking contract, verifying that the deposit signature is correct.

2. balanceOf is called on the LP token to confirm that the gauge’s token balance is now zero.

3. The LP tokens are withdrawn, verifying that the withdraw function signature is correct.

4. balanceOf is called on the LP token again, to confirm that the gauge has successfully withdrawn it’s entire
balance.

46 Chapter 9. The Curve DAO: Liquidity Gauges and Minting CRV

https://vyper.readthedocs.io/en/stable/control-structures.html#mutability

Curve Documentation, Release 1.0.0

5. A call to claim rewards is made to confirm that it does not revert.

These checks are required to protect against an incorrectly designed staking contract or incorrectly structured
input arguments.

It is also possible to claim from a reward contract that does not require onward staking. In this case, use 00000000
for the function selectors for both staking and withdrawing.

An example of generating the signatures input and enabling a vanilla SNX rewards contract:

>>> Rewards = Contract("0x99ac10631f69c753ddb595d074422a0922d9056b")

first, we get the signatures for depositing, withdrawing and claiming
>>> sigs = [rewards.stake.signature, rewards.withdraw.signature, rewards.
→˓getReward.signature]
>>> sigs
["0xa694fc3a", "0x2e1a7d4d", "0x3d18b912"]

now we remove the leading 0x and concatentate them
>>> sigs = "".join(i[2:] for i in sigs)
>>> sigs
"a694fc3a2e1a7d4d3d18b912"

finally, we add the leading 0x and trailing 00 bytes
>>> sigs = "0x" + sigs + ("00" * 20)
>>> sigs
"0xa694fc3a2e1a7d4d3d18b91200"

now we are ready to set the rewards contract
>>> gauge.set_rewards(rewards, sigs, [reward_token] + [ZERO_ADDRESS] * 7, {
→˓'from': alice})

9.6 LiquidityGaugeV3

LiquidityGaugeV3 is the current iteration of liquidity gauge used for curve pools on Ethereum mainnet. It retains a
majority of LiquidityGaugeV2’s functionality such as tokenized deposits, and flexible onward staking with up to 8
reward tokens with some modifications.

Outline of modified functionality:

1. Ability to redirect claimed rewards to an alternative account.

2. Opt-in claiming of rewards on interactions with the gauge, instead of auto-claiming.

3. Retrieving rewards from the reward contract happens at a minimum of once an hour, for reduced gas costs.

4. Expose the amount of claimed and claimable rewards for users.

5. Removal of claim_historic_rewards function.

6. Modify claimable_reward to be a slightly less accurate view function.

7. Reward tokens can no longer be removed once set, adding more tokens requires providing the array of re-
ward_tokens with any new tokens appended.

8. deposit(_value, _to) and withdraw(_value, _to) functions have an additional optional argument
_claim_rewards, which when set to True will claim any pending rewards.

9.6. LiquidityGaugeV3 47

Curve Documentation, Release 1.0.0

As this gauge maintains a similar API to LiquidityGaugeV2, the documentation only covers functions that were added
or modified since the previous version.

9.6.1 Querying Reward Information

LiquidityGaugeV3.rewards_receiver(addr: address)→ address: view
This gauge implementation allows for the redirection of claimed rewards to alternative accounts. If an ac-
count has enabled a default rewards receiver this function will return that default account, otherwise it’ll return
ZERO_ADDRESS.

LiquidityGaugeV3.last_claim()→ uint256: view
The epoch timestamp of the last call to claim from reward_contract.

9.6.2 Checking and Claiming Rewards

Note: Unlike LiquidityGaugeV2, rewards are not automatically claimed each time a user performs an action on the
gauge.

LiquidityGaugeV3.claim_rewards(_addr: address = msg.sender,
_receiver: address = ZERO_ADDRESS): nonpayable

Claim all available reward tokens for _addr. If no address is given, defaults to the caller. If the _receiver
argument is provided rewards will be distributed to the address specified (caller must be _addr in this case). If
the _receiver argument is not provided, rewards are sent to the default receiver for the account if one is set.

LiquidityGaugeV3.claimed_reward(_addr: address, _token: address)→ uint256: view
Get the number of already claimed reward tokens for a user.

LiquidityGaugeV3.claimable_reward(_addr: address, _token: address)→ uint256: view
Get the number of claimable reward tokens for a user

Note: This call does not consider pending claimable amount in reward_contract. Off-chain callers should
instead use claimable_reward_write as a view method.

LiquidityGaugeV3.claimable_reward_write(_addr: address, _token: address)→ uint256: nonpayable
Get the number of claimable reward tokens for a user. This function should be manually changed to “view” in
the ABI. Calling it via a transaction will checkpoint a user’s rewards updating the value of claimable_reward .
This function does not claim/distribute pending rewards for a user.

9.7 GaugeController

GaugeController is deployed to the Ethereum mainnet at:

0x2F50D538606Fa9EDD2B11E2446BEb18C9D5846bB.

This is a fixed address, the contract cannot be swapped out or upgraded.

Source code for this contract is available on Github.

48 Chapter 9. The Curve DAO: Liquidity Gauges and Minting CRV

https://etherscan.io/address/0x2F50D538606Fa9EDD2B11E2446BEb18C9D5846bB
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/GaugeController.vy

Curve Documentation, Release 1.0.0

9.7.1 Querying Gauge and Type Weights

GaugeController.gauge_types(gauge_addr: address)→ int128: view
The gauge type for a given address, as an integer.

Reverts if gauge_addr is not a gauge.

GaugeController.get_gauge_weight(gauge_addr: address)→ uint256: view
The current gauge weight for gauge_addr.

GaugeController.get_type_weight(type_id: int128)→ uint256: view
The current type weight for type_id as an integer normalized to 1e18.

GaugeController.get_total_weight()→ uint256: view
The current total (type-weighted) weight for all gauges.

GaugeController.get_weights_sum_per_type(type_id: int128)→ uint256: view
The sum of all gauge weights for type_id.

9.7.2 Vote-Weighting

Vote weight power is expressed as an integer in bps (units of 0.01%). 10000 is equivalent to a 100% vote weight.

GaugeController.vote_user_power(user: address)→ uint256: view
The total vote weight power allocated by user.

GaugeController.last_user_vote(user: address, gauge: address)→ uint256: view
Epoch time of the last vote by user for gauge. A gauge weight vote may only be modified once every 10 days.

GaugeController.vote_user_slopes(user: address, gauge: address)
Information about user’s current vote weight for gauge.

Returns the current slope, allocated voting power, and the veCRV locktime end.

>>> slope = gauge_controller.vote_user_slopes(alice, gauge)

>>> slope['power'] # the current vote weight for this gauge
4200

GaugeController.vote_for_gauge_weights(_gauge_addr: address,
_user_weight: uint256): nonpayable

Allocate voting power for changing pool weights.

• _gauge_addr Gauge which msg.sender votes for

• _user_weight Weight for a gauge in bps (units of 0.01%). Minimal is 0.01%. Ignored if 0

>>> gauge_controller = Contract(
→˓"0x2F50D538606Fa9EDD2B11E2446BEb18C9D5846bB")

>>> gauge_controller.vote_for_gauge_weights(my_favorite_gauge, 10000, {
→˓'from': alice})
Transaction sent:␣
→˓0xc185d9194bd3c2faa791801ccc57ad4edcfcaff7b5dab1c9101b78cf978a8d7f
Gas price: 20.0 gwei Gas limit: 47442 Nonce: 26

9.7. GaugeController 49

Curve Documentation, Release 1.0.0

9.7.3 Adding New Gauges and Types

All of the following methods are only be callable by the DAO ownership admin as the result of a successful vote.

GaugeController.add_gauge(addr: address, gauge_type: int128): nonpayable

Add a new gauge.

• addr: Address of the new gauge being added

• gauge_type: Gauge type

Note: Once a gauge has been added it cannot be removed. New gauges should be very carefully verified prior
to adding them to the gauge controller.

GaugeController.gauge_relative_weight(addr: address, time: uint256 = block.timestamp)→ uint256: view
Get the relative the weight of a gauge normalized to 1e18 (e.g. 1.0 == 1e18).

Inflation which will be received by this gauge is calculated as inflation_rate * relative_weight /
1e18. * addr: Gauge address * time: Epoch time to return a gauge weight for. If not given, defaults to the
current block time.

GaugeController.add_type(_name: String[64], weight: uint256 = 0): nonpayable

Add a new gauge type.

• _name: Name of gauge type

• weight: Weight of gauge type

GaugeController.change_type_weight(type_id: int128, weight: uint256)
Change the weight for a given gauge type.

Only callable by the DAO ownership admin.

• type_id Gauge type id

• weight New Gauge weight

9.8 Minter

Minter is deployed to the Ethereum mainnet at:

0xd061D61a4d941c39E5453435B6345Dc261C2fcE0.

This is a fixed address, the contract cannot be swapped out or upgraded.

Source code for this contract is available on Github.

9.8.1 Minting CRV

Minter.mint(gauge_addr: address): nonpayable

Mint allocated tokens for the caller based on a single gauge.

• gauge_addr: LiquidityGauge address to get mintable amount from

50 Chapter 9. The Curve DAO: Liquidity Gauges and Minting CRV

https://etherscan.io/address/0xd061D61a4d941c39E5453435B6345Dc261C2fcE0
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/Minter.vy

Curve Documentation, Release 1.0.0

Minter.mint_many(gauge_addrs: address[8]): nonpayable

Mint CRV for the caller from several gauges.

• gauge_addr: A list of LiquidityGauge addresses to mint from. If you wish to mint from less than eight
gauges, leave the remaining array entries as ZERO_ADDRESS.

Minter.mint_for(gauge_addr: address, for: address): nonpayable

Mint tokens for a different address.

In order to call this function, the caller must have been previously approved by for using
toggle_approve_mint.

• gauge_addr: LiquidityGauge address to get mintable amount from

• for: address to mint for. The minted tokens are sent to this address, not the caller.

Minter.toggle_approve_mint(minting_user: address): nonpayable

Toggle approval for minting_user to mint CRV on behalf of the caller.

Minter.allowed_to_mint_for(minter: address, for: address)→ bool: view
Getter method to check if minter has been approved to call mint_for on behalf of for.

9.8. Minter 51

Curve Documentation, Release 1.0.0

52 Chapter 9. The Curve DAO: Liquidity Gauges and Minting CRV

CHAPTER

TEN

THE CURVE DAO: GAUGES FOR EVM SIDECHAINS

In addition to Ethereum, Curve is active on several sidechains.

The Curve DAO is sufficiently complex that it cannot be easily bridged outside of Ethereum, however aspects of func-
tionality (including CRV emissions) are capable on the various sidechains where pools are active.

Source code for the smart contracts used in sidechain emissions are available on Github.

Note: Each sidechain comes with it’s own set of tradeoffs between security, scalability and cost of use. The technical
specifications and security considerations of each sidechain is outside the scope of this documentation, however we
encourage all users to do their own research prior to transferring funds off of Ethereum and onto a sidechain.

10.1 Implementation Details

At a high level, the process of CRV distribution on sidechain gauges is as follows:

1. On Ethereum, a RootChainGauge contract mints allocated CRV each week and transfers it over the bridge.

At the beginning of each epoch week, a call is made to the checkpoint function within each gauge.
This function mints all of the allocated CRV for the previous week, and transfers them over the bridge
to another contract deployed at the same address on the related sidechain. Emissions are delayed by
one week in order to avoid exceeding the max allowable supply of CRV.

Checkpointing may be performed by anyone. However, for chains that use the AnySwap bridge the
checkpoint must happen via the CheckpointProxy contract.

2. On the sidechain, CRV is received into a ChildChainStreamer contract and then streamed out to a
RewardsOnlyGauge.

The bridge automatically transfers CRV into a streamer contract, deployed at the same address
on the sidechain as the gauge is on Ethereum. Once the CRV has arrived, a call is made to
notify_reward_amount. This call updates the local accounting and streams the balance out lin-
early over the next seven days.

3. Liquidity providers who have staked their LP tokens in the RewardsOnlyGauge may claim their CRV.

The sidechain gauge is a simplified version of the gauges used on Ethereum. It handles CRV as though
it were any other 3rd-party reward token, evenly distributing between stakers based on the deposited
balances as the time the token is received.

53

https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/sidechains/
https://github.com/curvefi/curve-dao-contracts/tree/master/contracts/gauges/sidechain
https://anyswap.exchange/bridge

Curve Documentation, Release 1.0.0

10.2 RootChainGauge

RootChainGauge is a simplified liquidity gauge contract used for bridging CRV from Ethereum to a sidechain. Each
root gauge is added to the gauge controller and receives gauge weight votes to determine emissions for a sidechain pool.

The gauge cannot be directly staked into. There is one important external function:

RootChainGauge.checkpoint(): nonpayable

Mints all allocated CRV emissions for the gauge, and transfers across the bridge.

This function should be called once per week, immediately after the start of the epoch week. Subsequent calls
within the same epoch week have no effect.

For gauges that use the AnySwap bridge, this function is guarded and can only be called indirectly via
CheckpointProxy.checkpoint_many.

10.3 ChildChainStreamer

ChildChainStreamer is a simple reward streaming contract. The logic is similar to that of the Synthetix staking
rewards contract.

For each RootChainGauge deployed on Ethereum, a ChildChainStreamer is deployed at the same address on the
related sidechain. CRV tokens that are sent over the bridge are transferred into the streamer. From there they are
released linearly over seven days, to the gauge where LPs ultimately stake and claim them.

ChildChainStreamer.notify_reward_amount(token: address):

Notify the contract of a newly received reward. This updates the local accounting and streams the reward over a
preset period (typically seven days).

If the previous reward period has already expired, this function is callable by anyone. When there is an active
reward period it may only be called by the designated reward distributor account. Without this check, it would
be possible to exploit the system by repeatedly calling to extend an active reward period and thus dragging out
the duration over which the rewards are released.

Reverts if token is not registered as a reward within the contract, or if no extra balance of token was added
prior to the call.

10.4 RewardsOnlyGauge

RewardsOnlyGauge is a simplified version of the same gauge contract used on Ethereum. The logic around CRV
emissions and minting has been removed - it only deals with distribution of externally received rewards.

The API for this contract is similar to that of LiquidityGaugeV3.

54 Chapter 10. The Curve DAO: Gauges for EVM Sidechains

https://github.com/Synthetixio/synthetix/blob/master/contracts/StakingRewards.sol
https://github.com/Synthetixio/synthetix/blob/master/contracts/StakingRewards.sol

Curve Documentation, Release 1.0.0

10.5 RewardClaimer

RewardClaimer is a minimal passthrough contract that allows claiming from multiple reward streamers. For ex-
ample the am3CRV pool on Polygon utilizes this contract to receive both CRV emissions bridged across from
Ethereum, as well as WMATIC rewards supplied via a RewardStreamer contract. The RewardsOnlyGauge calls
the RewardClaimer as a way to retrieve both the CRV and WMATIC rewards.

10.5. RewardClaimer 55

Curve Documentation, Release 1.0.0

56 Chapter 10. The Curve DAO: Gauges for EVM Sidechains

CHAPTER

ELEVEN

CURVE DAO: FEE COLLECTION AND DISTRIBUTION

Curve exchange contracts have the capability to charge an “admin fee”, claimable by the contract owner. The admin
fee is represented as a percentage of the total fee collected on a swap.

For exchanges the fee is taken in the output currency and calculated against the final amount received. For example, if
swapping from USDT to USDC, the fee is taken in USDC.

Liquidity providers also incur fees when adding or removing liquidity. The fee is applied such that, for example,
a swap between USDC and USDT would pay roughly the same amount of fees as depositing USDC into the pool
and then withdrawing USDT. The only case where a fee is not applied on withdrawal is when removing liquidity via
remove_liquidity, as this method does not change the imbalance of the pool in any way.

Exchange contracts are indirectly owned by the Curve DAO via a proxy ownership contract. This contract includes
functionality to withdraw the fees, convert them to 3CRV, and forward them into the fee distributor contract. Collec-
tively, this process is referred to as “burning”.

Note: The burn process involves multiple transactions and is very gas intensive. Anyone can execute any step of the
burn process at any time and there is no hard requirement that it happens in the correct order. However, running the
steps out of order can be highly inefficient. If you wish to burn, it is recommended that you review all of the following
information so you understand exactly what is happening.

11.1 Withdrawing Admin Fees

Admin fees are stored within each exchange contract and viewable via the admin_balances public getter method.
The contract owner may call to claim the fees at any time using withdraw_admin_fees. Most pools also include a
function to donate pending fees to liquidity providers via donate_admin_fees.

Fees are initially claimed via PoolProxy.withdraw_many. This withdraws fees from many pools at once, pulling
them into the PoolProxy contract.

11.2 The Burn Process

Burning is handled on a per-coin basis. The process is initiated by calling the PoolProxy.burn or PoolProxy.
burn_many functions. Calling to burn a coin transfers that coin into the burner and then calls the burn function on the
burner.

Each burn action typically performs one conversion into another asset; either 3CRV itself, or something that is a step
closer to reaching 3CRV. As an example, here is the sequence of conversions required to burn HBTC:

HBTC -> WBTC -> sBTC -> sUSD -> USDC -> 3CRV

57

https://etherscan.io/token/0x6c3F90f043a72FA612cbac8115EE7e52BDe6E490

Curve Documentation, Release 1.0.0

Efficiency within the intermediate conversions is the reason it is important to run the burn process in a specific order.
If you burn sBTC prior to burning HBTC, you will have to burn sBTC a second time!

There are a total of nine burner contracts, each of which handles a different category of fee coin. The following list
also outlines the rough sequence in which burners should be executed:

• LPBurner: LP tokens in non-3CRV denominated metapools

• SynthBurner: non-USD denominated assets that are synths or can be swapped into synths

• ABurner: Aave lending tokens

• CBurner: Compound lending tokens

• YBurner: Yearn lending tokens

• MetaBurner: USD denominated assets that are directly swappable for 3CRV

• USDNBurner: USDN

• UniswapBurner: Assets that must be swapped on Uniswap/Sushiswap

• UnderlyingBurner: Assets that can be directly deposited into 3pool, or swapped for an asset that is deposited
into 3pool

Source code for burners is available on Github.

11.2.1 LPBurner

The LP Burner handles non-3CRV LP tokens, collected from metapools. The most common token burned via the LP
burner is sbtcCRV from BTC metapools.

LP burner calls to StableSwap.remove_liquidity_one_coin to unwrap the LP token into a single asset. The new
asset is then transferred on to another burner.

The burner is configurable via the following functions:

LPBurner.set_swap_data(lp_token: address, coin: address, burner: address)→ bool: nonpayable
Set conversion and transfer data for lp_token

• lp_token: LP token address

• coin: Address of the underlying coin to remove liquidity in

• burner: Burner to transfer coin to

This function is callable by the ownership admin and so requires a successful DAO vote.

Returns True.

11.2.2 SynthBurner

The synth burner is used to convert non-USD denominated assets into sUSD. This is accomplished via synth conversion,
the same mechanism used in cross-asset swaps.

When the synth burner is called to burn a non-synthetic asset, it uses RegistrySwap.exchange_with_best_rate
to swap into a related synth. If no direct path to a synth is avaialble, a swap is made into an intermediate asset.

For synths, the burner first transfers to the underlying burner. Then it calls UnderlyingBurner.convert_synth,
performing the cross-asset swap within the underlying burner. This is done to avoid requiring another transfer call after
the settlement period has passed.

The optimal sequence when burning assets using the synth burner is thus:

58 Chapter 11. Curve DAO: Fee Collection and Distribution

https://github.com/curvefi/curve-dao-contracts/tree/master/contracts/burners
https://etherscan.io/address/0x075b1bb99792c9E1041bA13afEf80C91a1e70fB3
https://docs.synthetix.io/integrations/settlement/

Curve Documentation, Release 1.0.0

1. Coins that cannot directly swap to synths

2. Coins that can directly swap to synths

3. Synthetic assets

The burner is configurable via the following functions:

SynthBurner.set_swap_for(_coins: address[10], _targets: address[10])→ bool:
Set target coins that the burner will swap into.

• coins: Array of coin addresses that will be burnt. If you wish to set less than 10, fill the remaining array
slots with ZERO_ADDRESS.

• targets: Array of coin addresses to be swapped into. The address as index n within this list corresponds
to the address at index n within coins.

For assets that can be directly swapped for a synth, the target should be set as that synth. For assets that cannot be
directly swapped, the target must be an asset that has already had it’s own target registered (e.g. can be swapped
for a synth).

This function is unguarded. All targets are validated using the registry.

Returns True.

SynthBurner.add_synths(_synths: address[10])→ bool:
Register synthetic assets within the burner.

• synths: List of synths to register

This function is unguarded. For each synth to be added, a call is made to Synth.currencyKey to validate the
addresss and obtain the synth currency key.

Returns True.

11.2.3 ABurner, CBurner, YBurner

ABurner, CBurner and YBurner are collectively known as “lending burners”. They unwrap lending tokens into the
underlying asset and transfer those assets onward into the underlying burner.

There is no configuration required for these burners.

11.2.4 MetaBurner

The meta-burner is used for assets within metapools that can be directly swapped for 3CRV. It uses the registry’s
exchange_with_best_rate and transfers 3CRV directly to the fee distributor.

There is no configuration required for this burner.

11.2. The Burn Process 59

https://docs.synthetix.io/contracts/source/contracts/Synth/#currencykey

Curve Documentation, Release 1.0.0

11.2.5 USDNBurner

The USDN burner is a special case that handles only USDN. Due to incompatibilities between the USDN pool and
how USDN accrues interest, this burner is required to ensure the LPs recieve a fair share of that interest.

The burn process consists of:

1. 50% of the USDN to be burned is transferred back into the pool.

2. The burner calls to donate_admin_fees, creditting the returned USDN to LPs

3. The remaining USDN is swapped for 3CRV and transferred directly to the fee distributor.

There is no configuration required for this burner.

11.2.6 UniswapBurner

UniswapBurner is used for burning assets that are not supported by Curve, such as SNX recieved by the DAO via the
Synthetix trading incentives program.

The burner works by querying swap rates on both Uniswap and Sushiswap using a path of initial asset -> wETH
-> USDC. It then performs the swap on whichever exchange offers a better rate. The received USDC is sent into the
underlying burner.

There is no configuration required for this burner.

11.2.7 UnderlyingBurner

The underlying burner handles assets that can be directly swapped to USDC, and deposits DAI/USDC/USDT into 3pool
to obtain 3CRV. This is the final step of the burn process for many assets that require multiple intermediate swaps.

Note: Prior to burning any assets with the underlying burner, you shoudl have completed the entire process with
SynthBurner, UniswapBurner and all of the lending burners.

The burn process consists of:

• For sUSD, first call settle to complete any pending synth conversions. Then, swap into USDC.

• for all other assets that are not DAI/USDC/USDT, swap into USDC.

• For DAI/USDC/USDT, only transfer the asset into the burner.

Once the entire burn process has been completed you must call execute as the final action:

UnderlyingBurner.execute()→ bool:
Adds liquidity to 3pool and transfers the received 3CRV to the fee distributor.

This is the final function to be called in the burn process, after all other steps are completed. Calling this funciton
does nothing if the burner has a zero balance of any of DAI, USDC and USDT.

There is no configuration required for this burner.

60 Chapter 11. Curve DAO: Fee Collection and Distribution

https://sips.synthetix.io/sips/sip-63
https://www.curve.fi/3pool
https://docs.synthetix.io/contracts/source/contracts/Synthetix/#settle

Curve Documentation, Release 1.0.0

11.3 Fee Distribution

Fees are distributed to veCRV holders via the FeeDistributor contract. The contract is deployed to the Ethereum
mainnet at:

0xA464e6DCda8AC41e03616F95f4BC98a13b8922Dc

Source code for this contract is available on Github.

Fees are distributed weekly. The porportional amount of fees that each user is to receive is calculated based on their
veCRV balance relative to the total veCRV supply. This amount is calculated at the start of the week. The actual
distribution occurs at the end of the week based on the fees that were collected. As such, a user that creates a new
vote-lock should expect to receive their first fee payout at the end of the following epoch week.

The available 3CRV balance to distribute is tracked via the “token checkpoint”. This is updated at minimum every 24
hours. Fees that are received between the last checkpoint of the previous week and first checkpoint of the new week
will be split evenly between the weeks.

FeeDistributor.checkpoint_token(): nonpayable

Updates the token checkpoint.

The token checkpoint tracks the balance of 3CRV within the distributor, to determine the amount of fees to
distribute in the given week. The checkpoint can be updated at most once every 24 hours. Fees that are received
between the last checkpoint of the previous week and first checkpoint of the new week will be split evenly between
the weeks.

To ensure full distribution of fees in the current week, the burn process must be completed prior to the last
checkpoint within the week.

A token checkpoint is automatically taken during any claim action, if the last checkpoint is more than 24 hours
old.

FeeDistributor.claim(addr: address = msg.sender)→ uint256: nonpayable
Claims fees for an account.

• addr: The address to claim for. If none is given, defaults to the caller.

Returns the amount of 3CRV received in the claim. For off-chain integrators, this function can be called as
though it were a view method in order to check the claimable amount.

Note: Every veCRV related action (locking, extending a lock, increasing the locktime) increments a user’s
veCRV epoch. A call to claim will consider at most 50 user epochs. For accounts that performed many veCRV
actions, it may be required to call claim more than once to receive the fees. In such cases it can be more efficient
to use claim_many.

>>> distro = Contract("0xA464e6DCda8AC41e03616F95f4BC98a13b8922Dc")
>>> distro.claim.call({'from': alice})
1323125068357710082803

>>> distro.claim({'from': alice})
Transaction sent: 0xa7978a8d7fb185d9194bd3c2fa1801ddd57ad4edcfcaff7b5dab1c9101b78cf9
Gas price: 92.0 gwei Gas limit: 256299 Nonce: 42

FeeDistributor.claim_many(receivers: address[20])→ bool: nonpayable
Perform multiple claims in a single call.

• receivers: An array of address to claim for. Claiming terminates at the first ZERO_ADDRESS.

11.3. Fee Distribution 61

https://etherscan.io/address/0xa464e6dcda8ac41e03616f95f4bc98a13b8922dc
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/FeeDistributor.vy

Curve Documentation, Release 1.0.0

This is useful to claim for multiple accounts at once, or for making many claims against the same account if that
account has performed more than 50 veCRV related actions.

Returns True.

62 Chapter 11. Curve DAO: Fee Collection and Distribution

CHAPTER

TWELVE

THE CURVE DAO: GOVERNANCE AND VOTING

Curve uses Aragon for governance and control of the protocol admin functionality. Interaction with Aragon occurs
through a modified implementation of the Aragon Voting App.

Much of the following functionality is possible via the DAO section of the Curve website. The following section
outlines DAO interactions via the CLI using the Brownie console.

Deployment addresses can be found in the addresses reference section of the documentation.

12.1 Creating a Vote

A single vote can perform multiple actions. The new_vote.py script in the DAO repo is used to create new votes.

1. Modify the TARGET, ACTIONS and DESCRPTION variables at the beginning of the script. The comments within
the script explain how each of these variables work.

2. Simulate the vote in a forked mainnet:

brownie run voting/new_vote simulate --network mainnet-fork

The simulation creates the vote, votes for it until quorum is reached, and then executes. The vote was
successful if none of the transactions within the simulation fail. You can optionally include the -I
flag to inspect the result of the vote once the simulation completes.

3. Create the vote:

1. Modify the SENDER variable to use an account that is permitted to make a vote for the DAO you are target-
ting.

2. Create the vote with the following command:

brownie run voting/new_vote make_vote --network mainnet

3. The vote should automatically appear within the site UX shortly.

63

https://aragon.org/
https://github.com/curvefi/curve-aragon-voting
https://github.com/aragon/aragon-apps/tree/master/apps/voting
https://dao.curve.fi/dao
https://eth-brownie.readthedocs.io/en/stable/interaction.html#using-the-console
https://github.com/curvefi/curve-dao-contracts/blob/master/scripts/voting/new_vote.py

Curve Documentation, Release 1.0.0

12.2 Inspecting Votes

The decode_vote.py script in the DAO repo is used to decode a vote in order to see which action(s) it will perform.

To use the script, start by modifying the VOTE_ID and VOTING_ADDRESS variables at the start of the script. Then run
the following:

brownie run voting/decode_vote --network mainnet

The script will output a list of transactions to be performed by the vote.

12.3 Voting

To place a vote via the CLI, first open a Brownie console connected to mainnet. Then use the following commands:

>>> aragon = Contract(VOTING_ADDRESS)
>>> aragon.vote(VOTE_ID, MY_VOTE, False, {'from': acct})
Transaction sent:␣
→˓0xa791801ccc57ad4edcfcaff7b5dab1c9101b78cf978a8d7fc185d9194bd3c2fa
Gas price: 20.0 gwei Gas limit: 156299 Nonce: 23

• VOTING_ADDRESS is one of the voting addresses given above

• VOTE_ID is the numeric ID of the vote

• MY_VOTE is a boolean

12.4 Executing a Vote

To execute a vote via the CLI, first open a Brownie console connected to mainnet. Then use the following commands:

>>> aragon = Contract(VOTING_ADDRESS)
>>> aragon.executeVote({'from': acct})
Transaction sent:␣
→˓0x85d9194bd3c2fa1801ccc57ad4edcfa7978a8d7fc1caff7b5dab1c9101b78cf9
Gas price: 20.0 gwei Gas limit: 424912 Nonce: 24

• VOTING_ADDRESS is one of the voting addresses given above

64 Chapter 12. The Curve DAO: Governance and Voting

https://github.com/curvefi/curve-dao-contracts/blob/master/scripts/voting/new_vote.py

CHAPTER

THIRTEEN

CURVE DAO: PROTOCOL OWNERSHIP

The Curve DAO controls admin functionality throughout the protocol. Performing calls to to owner/admin-level func-
tions is only possible via a successful DAO vote.

Ownership is handled via a series of proxy contracts. At a high level, the flow of ownership is:

DAO -> Aragon Agent -> Ownership Proxy -> Contracts

At the ownership proxy level there are two main contracts:

• PoolProxy: Admin functionality for exchange contracts

• GaugeProxy: Admin functionality for liquidity gauges

The DAO is capable of replacing the ownership proxies via a vote. Deployment addresses for the current contracts can
be found in the addresses reference section of the documentation.

13.1 Agents

The Curve DAO has a total of three Aragon Agent ownership addresses, which are governed by two independent DAOs:

1. The Community DAO (or just “the DAO”) governs the day-to-day operation of the protocol.

Voting is based on a user’s holdings of “Vote Escrowed CRV” (veCRV). veCRV is obtained by locking
CRV for up to 4 years, with 1 veCRV equal to 1 CRV locked for 4 years. As the lock time decreases,
An account’s veCRV balance decreases linearly as the time remaining until unlock decreases. veCRV
is non-transferrable.

An account must have a minimum balance of 2500 veCRV to make a DAO vote. Each vote lasts for
one week. Votes cannot be executed until the entire week has passed.

The DAO has ownership of two admin accounts:

• The ownership admin controls most functionality within the protocol. Performing an action via
the ownership admin requires a 30% quorum with 51% support.

• The parameter admin has authority to modify parameters on pools, such as adjusting the am-
plification co-efficient. Performing an action via the paramater admin requries a 15% quorum
with 51% support.

2. The Emergency DAO has limited authority to kill pools and gauges during extraordinary circumstances.

The emergency DAO consists of nine members, comprised of a mix of the Curve team and prominent
figures within the DeFi community. Each member has one vote. Any member may propose a vote.

All members of the emergency DAO may propose new votes. A vote lasts for 24 hours and can be
executed immediately once it receives 66% support.

65

https://hack.aragon.org/docs/guides-use-agent
https://dao.curve.fi/emergencymembers

Curve Documentation, Release 1.0.0

13.2 PoolProxy

PoolProxy is used for indirect ownership of exchange contracts.

Source code for this contract is available on Github.

13.2.1 Configuring Fee Burners

PoolProxy.burners(coin: address)→ address: view
Getter for the burner contract address for coin.

PoolProxy.set_burner(coin: address, burner: address): nonpayable

Set burner of coin to burner address.

Callable only by the ownership admin.

PoolProxy.set_many_burners(coins: address[20], burners: address[20]): nonpayable

Set burner contracts for many coins at once.

• coins: Array of coin addresses. If you wish to set less than 20 burners, fill the remaining array slots with
ZERO_ADDRESS.

• burners: Array of burner addresses. The address as index n within this list corresponds to the address at
index n within coins.

Callable only by the ownership admin.

PoolProxy.set_donate_approval(pool: address, caller: address,
is_approved: bool): nonpayable

Set approval for an address to call donate_admin_fees on a specific pool.

• pool: Pool address

• caller: Adddress to set approval for

• is_approved: Approval status

Callable only by the ownership admin.

PoolProxy.set_burner_kill(_is_killed: bool): nonpayable

Disable or enable the process of fee burning.

Callable by the emergency and ownership admins.

13.2.2 Withdraing and Burning Fees

PoolProxy.withdraw_admin_fees(pool: address): nonpayable

Withdraw admin fees from pool into this contract.

This is the first step in fee burning. This function is unguarded - it may be called by any address.

PoolProxy.withdraw_many(pools: address[20]): nonpayable

Withdraw fees from multiple pools in a single call.

This function is unguarded.

66 Chapter 13. Curve DAO: Protocol Ownership

https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/PoolProxy.vy

Curve Documentation, Release 1.0.0

PoolProxy.burn(coin: address): nonpayable

Transfer the contract’s balance of coin into the preset burner and execute the burn process.

Only callable via an externally owned account; a check that tx.origin == msg.sender is performed to pre-
vent potential flashloan exploits.

PoolProxy.burn_many(coins: address[20]): nonpayable

Execute the burn process on many coins at once.

Note that burning can be very gas intensive. In some cases burning 20 coins at once is not possible due to the
block gas limit.

PoolProxy.donate_admin_fees(_pool: address): nonpayable

Donate a pool’s current admin fees to the pool LPs.

Callable by the ownership admin, or any address given explicit permission to do so via set_donate_approval

13.2.3 Killing Pools

PoolProxy.kill_me(_pool: address): nonpayable

Pauses the pool.

When paused, it is only possible for existing LPs to remove liquidity via remove_liquidity. Exchanges and
adding or removing liquidity in other ways are blocked.

Callable only by the emergency admin.

PoolProxy.unkill_me(_pool: address): nonpayable

Unpause a pool that was previously paused, re-enabling exchanges.

Callable by the emergency and ownership admins.

13.2.4 Pool Ownership

PoolProxy.commit_transfer_ownership(pool: address, new_owner: address): nonpayable

Initiate an ownership transfer of pool to new_owner.

Callable only by the ownership admin.

PoolProxy.accept_transfer_ownership(pool: address): nonpayable

Accept ending ownership transfer for pool.

This function is unguarded.

PoolProxy.revert_transfer_ownership(pool: address): nonpayable

Cancel a pending ownership transfer for pool.

Callable by the emergency and ownership admins.

13.2. PoolProxy 67

Curve Documentation, Release 1.0.0

13.2.5 Modifying Pool Parameters

PoolProxy.commit_new_parameters(pool: address, amplification: uint256, new_fee: uint256,
new_admin_fee: uint256, min_asymmetry: uint256): nonpayable

Initiate a change of parameters for a pool.

• pool: Pool address

• amplification New Amplification coefficient

• new_fee New fee

• new_admin_fee New admin fee

• min_asymmetry Minimal asymmetry factor allowed.

Asymmetry factor is: Prod(balances) / (Sum(balances) / N) ** N

Callable only by the parameter admin.

PoolProxy.apply_new_parameters(_pool: address): nonpayable

Apply a parameter change on a pool.

This function is unguarded, however it can only be called via an EOA to minimize the likelihood of a flashloan
exploit.

PoolProxy.revert_new_parameters(_pool: address): nonpayable

Revert comitted new parameters for pool

Callable by the emergency and ownership admins.

PoolProxy.ramp_A(_pool: address, _future_A: uint256, _future_time: uint256): nonpayable

Start a gradual increase of the amplification coefficient for a pool.

• _pool: Pool address

• future_A: New amplification coefficient to ramp to

• future_time: Epoch time to complete the ramping at

Callable only by the parameter admin.

PoolProxy.stop_ramp_A(pool: address): nonpayable

Stop the gradual ramping of pool’s amplification coefficient.

Callable by the emergency and parameter admins.

PoolProxy.commit_new_fee(pool: address, new_fee: uint256, new_admin_fee: uint256):

Initiate change in the fees for a pool.

• ``pool`:` Pool address

• new_fee: New fee

• new_admin_fee: New admin fee

Callable only by the parameter admin.

PoolProxy.apply_new_fee(_pool: address): nonpayable

Apply a fee change to a pool.

This function is unguarded.

68 Chapter 13. Curve DAO: Protocol Ownership

Curve Documentation, Release 1.0.0

13.3 GaugeProxy

GaugeProxy is used for indirect ownership of liquidity gauges.

Source code for this contract is available on Github.

GaugeProxy.set_rewards(gauge: address, reward_contract: address, sigs: bytes32,
reward_tokens: address[8]): nonpayable

Set the active reward contract for a LiquidityGaugeV2 deployment.

See the gauge documentation for details on how this function works.

• gauge Gauge address

• reward_contract: Address of the staking contract. Set to ZERO_ADDRESS if staking rewards are being
removed.

• sigs: A concatenation of three four-byte function signatures: stake, withdraw and getReward. The
signatures are then right padded with empty bytes. See the example below for more information on how to
prepare this data.

• reward_tokens: Array of rewards tokens received from the staking contract.

Callable by the ownership admin.

GaugeProxy.set_killed(gauge: address, is_killed: bool): nonpayable

Set the killed status for a gauge.

• gauge Gauge address

• is_killed Killed status to set

Once killed, a gauge always yields a rate of 0 and so cannot mint CRV. Any vote-weight given to a killed gauge
effectively burns CRV.

Callable by the ownership admin or the emergency admin.

GaugeProxy.commit_transfer_ownership(gauge: address, new_owner: address): nonpayable

Initiate the transfer of ownership of a gauge.

• gauge: Address of the gauge to transfer ownership of

• new_owner: New owner address

Callable only by the ownership admin.

GaugeProxy.accept_transfer_ownership(gauge: address): nonpayable

Apply ownership transfer of a gauge.

This function is unguarded. After commit_transfer_ownership has been called by the current owner, anyone
can call into GaugeProxy to trigger the acceptance.

13.3. GaugeProxy 69

https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/GaugeProxy.vy

Curve Documentation, Release 1.0.0

70 Chapter 13. Curve DAO: Protocol Ownership

CHAPTER

FOURTEEN

REGISTRY

The Curve registry contracts are open source and may be found on Github.

The registry is comprised of the following contracts:

• AddressProvider: Address provider for registry contracts. This contract is immutable and it’s address will
never change. On-chain integrators should always use this contract to fetch the current address of other registry
components.

• Registry: The main registry contract. Used to locate pools and query information about them as well as
registered coins.

• PoolInfo: Aggregate getter methods for querying large data sets about a single pool. Designed for off-chain
use.

• Swaps: The registry exchange contract. Used to find pools and query exchange rates for token swaps. Also
provides a unified exchange API that can be useful for on-chain integrators.

71

https://github.com/curvefi/curve-pool-registry

Curve Documentation, Release 1.0.0

72 Chapter 14. Registry

CHAPTER

FIFTEEN

REGISTRY: ADDRESS PROVIDER

AddressProvider is an address provider for registry contracts.

Source code for this contract is available on Github.

15.1 How it Works

The address provider is deployed to the same address on Ethereum and all sidechains/L2’s where Curve is active. The
deployment address is:

0x0000000022D53366457F9d5E68Ec105046FC4383

This contract is immutable. The address will never change.

The address provider is the point-of-entry for on-chain integrators. All other contracts within the registry are assigned
an ID within the address provider. IDs start from zero and increment as new components are added. The address
associated with an ID may change, but the API of the associated contract will not.

Integrators requiring an aspect of the registry should always start by querying the address provider for the current
address of the desired component. An up-to-date list of registered IDs is available here.

To interact with the address provider using the Brownie console:

$ brownie console --network mainnet
Brownie v1.11.10 - Python development framework for Ethereum

Brownie environment is ready.
>>> provider = Contract.from_explorer('0x0000000022D53366457F9d5E68Ec105046FC4383')
Fetching source of 0x0000000022D53366457F9d5E68Ec105046FC4383 from api.etherscan.io...

>>> provider
<AddressProvider Contract '0x0000000022D53366457F9d5E68Ec105046FC4383'>

73

https://github.com/curvefi/curve-pool-registry/blob/master/contracts/AddressProvider.vy
https://etherscan.io/address/0x0000000022d53366457f9d5e68ec105046fc4383

Curve Documentation, Release 1.0.0

15.2 View Functions

AddressProvider.get_registry()→ address: view
Get the address of the main registry contract.

This is a more gas-efficient equivalent to calling get_address(0).

>>> provider.get_registry()
'0x90E00ACe148ca3b23Ac1bC8C240C2a7Dd9c2d7f5'

AddressProvider.get_address(id: uint256)→ address: view
Fetch the address associated with id.

>>> provider.get_address(1)
'0xe64608E223433E8a03a1DaaeFD8Cb638C14B552C'

AddressProvider.get_id_info(id: uint256)→ address, bool, uint256, uint256, string: view
Fetch information about the given id.

Returns a tuple of the following:

• address: Address associated to the ID.

• bool: Is the address at this ID currently set?

• uint256: Version of the current ID. Each time the address is modified, this number increments.

• uint256: Epoch timestamp this ID was last modified.

• string: Human-readable description of the ID.

>>> provider.get_id_info(1).dict()
{

'addr': "0xe64608E223433E8a03a1DaaeFD8Cb638C14B552C",
'description': "PoolInfo Getters",
'is_active': True,
'last_modified': 1604019085,
'version': 1

}

AddressProvider.max_id()→ uint256: view
Get the highest ID set within the address provider.

>>> provider.max_id()
1

74 Chapter 15. Registry: Address Provider

Curve Documentation, Release 1.0.0

15.3 Address IDs

Note that not all contracts are available on all sidechains.

• 0: The main registry contract. Used to locate pools and query information about them.

• 1: Aggregate getter methods for querying large data sets about a single pool. Designed for off-chain use.

• 2: Generalized swap contract. Used for finding rates and performing exchanges.

• 3: The metapool factory.

• 4: The fee distributor. Used to distribute collected fees to veCRV holders.

• 5: The cryptoswap registry contract. Used to locate and query information about pools for uncorrelated assets.

• 6: The cryptoswap factory.

15.3. Address IDs 75

Curve Documentation, Release 1.0.0

76 Chapter 15. Registry: Address Provider

CHAPTER

SIXTEEN

REGISTRY

Registry is the main registry contract. It is used to locate pools and query information about them.

Source code for this contract is available on Github.

16.1 Deployment Address

Use the get_registry method to get the address of the main registry from the address provider:

>>> provider = Contract('0x0000000022D53366457F9d5E68Ec105046FC4383')
>>> provider.get_registry()
'0x90E00ACe148ca3b23Ac1bC8C240C2a7Dd9c2d7f5'

16.2 View Functions

Because Vyper does not support dynamic-length arrays, all arrays have a fixed length. Excess fields contain zero values.

16.2.1 Finding Pools

Registry.pool_count()→ uint256: view
The number of pools currently registered within the contract.

>>> registry.pool_count()
18

Registry.pool_list(i: uint256)→ address: view
Master list of registered pool addresses.

Note that the ordering of this list is not fixed. Index values of addresses may change as pools are added or
removed.

Querying values greater than Registry.pool_count returns 0x00.

>>> registry.pool_list(7)
'0x8474DdbE98F5aA3179B3B3F5942D724aFcdec9f6'

77

https://github.com/curvefi/curve-pool-registry/blob/master/contracts/Registry.vy

Curve Documentation, Release 1.0.0

Registry.get_pool_from_lp_token(lp_token: address)→ address: view
Get the pool address for a given Curve LP token.

>>> registry.get_pool_from_lp_token(
→˓'0x1AEf73d49Dedc4b1778d0706583995958Dc862e6')
'0x8474DdbE98F5aA3179B3B3F5942D724aFcdec9f6'

Registry.get_lp_token(pool: address)→ address: view
Get the LP token address for a given Curve pool.

>>> registry.get_lp_token('0x8474DdbE98F5aA3179B3B3F5942D724aFcdec9f6')
'0x1AEf73d49Dedc4b1778d0706583995958Dc862e6'

Registry.find_pool_for_coins(_from: address, _to: address, i: uint256 = 0)→ address: view
Finds a pool that allows for swaps between _from and _to. You can optionally include i to get the n-th pool,
when multiple pools exist for the given pairing.

The order of _from and _to does not affect the result.

Returns 0x00 when swaps are not possible for the pair or i exceeds the number of available pools.

>>> registry.find_pool_for_coins('0x6b175474e89094c44da98b954eedeac495271d0f
→˓', '0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48')
'0xbEbc44782C7dB0a1A60Cb6fe97d0b483032FF1C7'

>>> registry.find_pool_for_coins('0x6b175474e89094c44da98b954eedeac495271d0f
→˓', '0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48', 1)
'0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27'

16.2.2 Getting Info About a Pool

Coins and Coin Info

Registry.get_n_coins(pool: address)→ uint256[2]: view
Get the number of coins and underlying coins within a pool.

>>> registry.get_n_coins('0x8474DdbE98F5aA3179B3B3F5942D724aFcdec9f6')
(2, 4)

Registry.get_coins(pool: address)→ address[8]: view
Get a list of the swappable coins within a pool.

>>> registry.get_coins('0x8474DdbE98F5aA3179B3B3F5942D724aFcdec9f6')
("0xe2f2a5C287993345a840Db3B0845fbC70f5935a5",
→˓"0x6c3F90f043a72FA612cbac8115EE7e52BDe6E490",
→˓"0x00",
→˓"0x00",
→˓"0x00",
→˓"0x00",
→˓"0x00",
→˓"0x00")

78 Chapter 16. Registry

Curve Documentation, Release 1.0.0

Registry.get_underlying_coins(pool: address)→ address[8]: view
Get a list of the swappable underlying coins within a pool.

For pools that do not involve lending, the return value is identical to Registry.get_coins.

>>> registry.get_underlying_coins(
→˓'0x8474DdbE98F5aA3179B3B3F5942D724aFcdec9f6')
("0xe2f2a5C287993345a840Db3B0845fbC70f5935a5",
→˓"0x6B175474E89094C44Da98b954EedeAC495271d0F",
→˓"0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48",
→˓"0xdAC17F958D2ee523a2206206994597C13D831ec7",
→˓"0x00",
→˓"0x00",
→˓"0x00",
→˓"0x00")

Registry.get_decimals(pool: address)→ uint256[8]: view
Get a list of decimal places for each coin within a pool.

>>> registry.get_decimals('0x8474DdbE98F5aA3179B3B3F5942D724aFcdec9f6')
(18, 18, 0, 0, 0, 0, 0, 0)

Registry.get_underlying_decimals(pool: address)→ uint256[8]: view
Get a list of decimal places for each underlying coin within a pool.

For pools that do not involve lending, the return value is identical to Registry.get_decimals. Non-lending
coins that still involve querying a rate (e.g. renBTC) are marked as having 0 decimals.

>>> registry.get_underlying_decimals(
→˓'0x8474DdbE98F5aA3179B3B3F5942D724aFcdec9f6')
(18, 18, 6, 6, 0, 0, 0, 0)

Registry.get_coin_indices(pool: address, _from: address, _to: address)→ (int128, int128, bool): view
Convert coin addresses into indices for use with pool methods.

Returns the index of _from, index of _to, and a boolean indicating if the coins are considered underlying in the
given pool.

>>> registry.get_coin_indices('0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27',
→˓'0xdac17f958d2ee523a2206206994597c13d831ec7',
→˓'0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48')
(2, 1, True)

Based on the above call, we know:

• the index of the coin we are swapping out of is 2

• the index of the coin we are swapping into is 1

• the coins are considred underlying, so we must call exchange_underlying

From this information we can perform a token swap:

>>> swap = Contract('0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27')
>>> swap.exchange_underlying(2, 1, 1e18, 0, {'from': alice})

16.2. View Functions 79

Curve Documentation, Release 1.0.0

Balances and Rates

Registry.get_balances(pool: address)→ uint256[8]: view
Get available balances for each coin within a pool.

These values are not necessarily the same as calling Token.balanceOf(pool) as the total balance also includes
unclaimed admin fees.

>>> registry.get_balances('0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27')
(11428161394428689823275227, 47831326741306, 45418708932136,␣
→˓48777578907442492245548483, 0, 0, 0, 0)

Registry.get_underlying_balances(pool: address)→ uint256[8]: view
Get balances for each underlying coin within a pool.

For pools that do not involve lending, the return value is identical to Registry.get_balances.

>>> registry.get_underlying_balances(
→˓'0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27')
(11876658145799734093379928, 48715210997790596223520238,␣
→˓46553896776332824101242804, 49543896565857325657915396, 0, 0, 0, 0)

Registry.get_admin_balances(pool: address)→ uint256[8]: view
Get the current admin balances (uncollected fees) for a pool.

>>> registry.get_admin_balances('0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27
→˓')
(10800690926373756722358, 30891687335, 22800662409, 16642955874751891466129,
→˓ 0, 0, 0, 0)

Registry.get_rates(pool: address)→ uint256[8]: view
Get the exchange rates between coins and underlying coins within a pool, normalized to a 1e18 precision.

For non-lending pools or non-lending coins within a lending pool, the rate is 1e18.

>>> registry.get_rates('0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27')
(1039244956550111510, 1018479293504725874, 1024993895758183341,␣
→˓1015710454247817308, 0, 0, 0, 0)

Registry.get_virtual_price_from_lp_token(lp_token: address)→ uint256: view
Get the virtual price of a pool LP token.

>>> registry.get_virtual_price_from_lp_token(
→˓'0x3B3Ac5386837Dc563660FB6a0937DFAa5924333B')
1060673685385893596

80 Chapter 16. Registry

Curve Documentation, Release 1.0.0

Pool Parameters

Registry.get_A(pool: address)→ uint256: view
Get the current amplification coefficient for a pool.

>>> registry.get_A('0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27')
500

Registry.get_fees(pool: address)→ uint256[2]: view
Get the fees for a pool.

Fees are expressed as integers with a 1e10 precision. The first value is the total fee, the second is the percentage
of the fee taken as an admin fee.

A typical return value here is (4000000, 5000000000) - a 0.04% fee, 50% of which is taken as an admin fee.

>>> registry.get_fees('0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27')
(4000000, 5000000000)

Registry.get_parameters(pool: address)→ PoolParams: view
Get all parameters for a given pool.

The return value is a struct, organized as follows:

struct PoolParams:
A: uint256
future_A: uint256
fee: uint256
admin_fee: uint256
future_fee: uint256
future_admin_fee: uint256
future_owner: address
initial_A: uint256
initial_A_time: uint256
future_A_time: uint256

Note that for older pools where initial_A is not public, this value is set to 0.

>>> registry.get_parameters('0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27').
→˓dict()
{

'A': 500,
'admin_fee': 5000000000,
'fee': 4000000,
'future_A': 500,
'future_A_time': 0,
'future_admin_fee': 5000000000,
'future_fee': 4000000,
'future_owner': "0x56295b752e632f74a6526988eaCE33C25c52c623",
'initial_A': 0,
'initial_A_time': 0

}

16.2. View Functions 81

Curve Documentation, Release 1.0.0

Gas Estimates

Registry.estimate_gas_used(pool: address, _from: address, _to: address)→ uint256: view
Get an estimate on the upper bound for gas used in an exchange.

Pool Metadata

Registry.is_meta(pool: address)→ bool: view
Get a boolean identifying whether pool is a metapool.

>>> registry.is_meta('0x4f062658EaAF2C1ccf8C8e36D6824CDf41167956')
True

Registry.get_pool_name(pool: address)→ String[64]: view
Get the name given to a pool upon registration.

>>> registry.get_pool_name('0x4f062658EaAF2C1ccf8C8e36D6824CDf41167956')
'gusd'

Registry.get_pool_asset_type(pool: address)→ uint256: view
Get the asset type of specific pool as an integer.

Note: The asset type of a pool is subject to modification, and is primarily of use to off-chain integrators.

>>> registry.get_pool_asset_type('0x4f062658EaAF2C1ccf8C8e36D6824CDf41167956')
0

Asset types are as follows:

• 0: USD

• 1: BTC

• 2: ETH

• 3: Other StableSwap

• 4: CryptoSwap

16.2.3 Gauges

Registry.gauge_controller()→ address: view
Get the address of the Curve DAO GaugeController contract.

>>> registry.gauge_controller()
'0x2F50D538606Fa9EDD2B11E2446BEb18C9D5846bB'

Registry.get_gauges(pool: address)→ (address[10], int128[10]): view
Get a list of LiquidityGauge contracts associated with a pool, and their gauge types.

>>> registry.get_gauges('0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27')
(('0x8474DdbE98F5aA3179B3B3F5942D724aFcdec9f6',
→˓'0x00',
→˓'0x00',
→˓'0x00',
→˓'0x00',
→˓'0x00',
→˓'0x00',
→˓'0x00',
→˓'0x00',
→˓'0x00'), (0, 0, 0, 0, 0, 0, 0, 0, 0,
→˓ 0))

(continues on next page)

82 Chapter 16. Registry

https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/GaugeController.vy
https://github.com/curvefi/curve-contract/tree/master/contracts/gauges

Curve Documentation, Release 1.0.0

(continued from previous page)

16.2.4 Getting Coins and Coin Swap Complements

Registry.coin_count()→ uint256: view
Get the total number of unique coins throughout all registered curve pools.

>>> registry.coin_count()
42

Registry.get_coin(i: uint256)→ address: view
Get the ith unique coin throughout all registered curve pools.

Returns 0x00 for values of i greater than the return value of
Registry.coin_count.

>>> registry.get_coin(0)
'0x6B175474E89094C44Da98b954EedeAC495271d0F'

Registry.get_coin_swap_count(coin: address)→ uint256: view
Get the total number of unique swaps available for coin.

>>> registry.get_coin_swap_count('0x6B175474E89094C44Da98b954EedeAC495271d0F
→˓')
12

Registry.get_coin_swap_complement(coin: address, i: uint256)→ address: view
Get the ith unique coin available for swapping against coin across all registered curve pools.

>>> registry.get_coin_swap_complement(
→˓'0x6B175474E89094C44Da98b954EedeAC495271d0F', 0)
'0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48'

16.2.5 Registry Metadata

Registry.last_updated()→ uint256:: view
Get the epoch time of the last registry update.

Only successful state modifying functions (add_pool, add_metapool, set_pool_gas_estimates, etc.) will
update this return value.

>>> registry.last_updated()
1617850905

16.2. View Functions 83

Curve Documentation, Release 1.0.0

84 Chapter 16. Registry

CHAPTER

SEVENTEEN

REGISTRY: POOL INFO

PoolInfo contains aggregate getter methods for querying large data sets about a single pool. It is designed for off-chain
use (not optimized for gas efficiency).

Source code for this contract is available on Github.

17.1 Deployment Address

The pool info contract is registered in the address provider with ID 1. To get the current address:

>>> provider = Contract('0x0000000022D53366457F9d5E68Ec105046FC4383')
>>> provider.get_address(1)
'0xe64608E223433E8a03a1DaaeFD8Cb638C14B552C'

17.2 View Functions

PoolInfo.get_pool_coins(pool: address)→ address[8], address[8], uint256[8], uint256[8]: view
Get information about the coins in a pool.

The return data is structured as follows:

• address[8]: Coin addresses

• address[8]: Underlying coin addresses

• uint256[8]: Coin decimal places

• uint256[8]: Coin underlying decimal places

>>> pool_info.get_pool_coins('0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27').dict()
{

'coins': (
"0xC2cB1040220768554cf699b0d863A3cd4324ce32",
"0x26EA744E5B887E5205727f55dFBE8685e3b21951",
"0xE6354ed5bC4b393a5Aad09f21c46E101e692d447",
"0x04bC0Ab673d88aE9dbC9DA2380cB6B79C4BCa9aE",
"0x00",
"0x00",
"0x00",
"0x00"

(continues on next page)

85

https://github.com/curvefi/curve-pool-registry/blob/master/contracts/PoolInfo.vy

Curve Documentation, Release 1.0.0

(continued from previous page)

),
'decimals': (18, 6, 6, 18, 0, 0, 0, 0),
'underlying_coins': (

"0x6B175474E89094C44Da98b954EedeAC495271d0F",
"0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48",
"0xdAC17F958D2ee523a2206206994597C13D831ec7",
"0x4Fabb145d64652a948d72533023f6E7A623C7C53",
"0x00",
"0x00",
"0x00",
"0x00"

),
'underlying_decimals': (18, 6, 6, 18, 0, 0, 0, 0)

}

PoolInfo.get_pool_info(pool: address)→ PoolInfo: view
Query information about a pool.

The return data is formatted using the following structs:

struct PoolInfo:
balances: uint256[MAX_COINS]
underlying_balances: uint256[MAX_COINS]
decimals: uint256[MAX_COINS]
underlying_decimals: uint256[MAX_COINS]
rates: uint256[MAX_COINS]
lp_token: address
params: PoolParams
is_meta: bool
name: String[64]

this struct is nested inside `PoolInfo`
struct PoolParams:

A: uint256
future_A: uint256
fee: uint256
admin_fee: uint256
future_fee: uint256
future_admin_fee: uint256
future_owner: address
initial_A: uint256
initial_A_time: uint256
future_A_time: uint256

An example query:

>>> pool_info.get_pool_info('0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27').dict()
{

'balances': (11428161394428689823275227, 47831326741306, 45418708932136,␣
→˓48777578907442492245548483, 0, 0, 0, 0),
'decimals': (18, 6, 6, 18, 0, 0, 0, 0),
'lp_token': "0x3B3Ac5386837Dc563660FB6a0937DFAa5924333B",
'params': (500, 500, 4000000, 5000000000, 4000000, 5000000000,

→˓"0x56295b752e632f74a6526988eaCE33C25c52c623", 0, 0, 0), (continues on next page)

86 Chapter 17. Registry: Pool Info

Curve Documentation, Release 1.0.0

(continued from previous page)

'rates': (1039246194444517276, 1018480818866816704, 1024994762508449404,␣
→˓1015710534981182027, 0, 0, 0, 0),
'underlying_balances': (11876673238657763875985115, 48715288826971602262153927,␣

→˓46553938775335128958626025, 49543900767165234117573778, 0, 0, 0, 0),
'underlying_decimals': (18, 6, 6, 18, 0, 0, 0, 0),
'is_meta': False,
'name': 'busd'

}

17.2. View Functions 87

Curve Documentation, Release 1.0.0

88 Chapter 17. Registry: Pool Info

CHAPTER

EIGHTEEN

REGISTRY: EXCHANGES

The registry exchange contract is used to find pools and query exchange rates for token swaps. It also provides a unified
exchange API that can be useful for on-chain integrators.

Source code for this contract is available on Github.

18.1 Deployment Address

The exchange contract is registered in the address provider with ID 2. To get the current address:

>>> provider = Contract('0x0000000022D53366457F9d5E68Ec105046FC4383')
>>> provider.get_address(2)
'0xD1602F68CC7C4c7B59D686243EA35a9C73B0c6a2'

18.2 Finding Pools and Swap Rates

Swaps.get_best_rate(_from: address, _to: address, _amount: uint256, _exclude_pools: address[8])→
(address, uint256): view

Find the pool offering the best rate for a given swap.

• _from: Address of coin being sent.

• _to: Address of coin being received.

• _amount: Quantity of _from being sent.

• _exclude_pools: [optional] A list of up to 8 addresses which should be excluded from the query.

Returns the address of the pool offering the best rate, and the expected amount received in the swap.

Swaps.get_exchange_amount(_pool: address, _from: address, _to: address, _amount: uint256)→ uint256: view
Get the current number of coins received in an exchange.

• _pool: Pool address.

• _from: Address of coin to be sent.

• _to: Address of coin to be received.

• _amount: Quantity of _from to be sent.

Returns the quantity of _to to be received in the exchange.

89

https://github.com/curvefi/curve-pool-registry/blob/master/contracts/Swaps.vy

Curve Documentation, Release 1.0.0

18.3 Swapping Tokens

Swaps.exchange(_pool: address, _from: address, _to: address, _amount: uint256, _expected: uint256, _receiver:
address = msg.sender)→ uint256: payable

Perform an token exchange using a specific pool.

• _pool: Address of the pool to use for the swap.

• _from: Address of coin being sent.

• _to: Address of coin being received.

• _amount: Quantity of _from being sent.

• _expected: Minimum quantity of _to received in order for the transaction to succeed.

• _receiver: Optional address to transfer the received tokens to. If not specified, defaults to the caller.

Returns the amount of _to received in the exchange.

Swaps.exchange_with_best_rate(_from: address, _to: address, _amount: uint256, _expected: uint256,
_receiver: address = msg.sender)→ uint256: payable

Perform an exchange using the pool that offers the best rate.

• _from: Address of coin being sent.

• _to: Address of coin being received.

• _amount: Quantity of _from being sent.

• _expected: Minimum quantity of _to received in order for the transaction to succeed.

• _receiver: Optional address to transfer the received tokens to. If not specified, defaults to the caller.

Returns the amount of _to received in the exchange.

Warning: This function queries the exchange rate for every pool where a swap between _to and _from is
possible. For pairs that can be swapped in many pools this will result in very significant gas costs!

90 Chapter 18. Registry: Exchanges

CHAPTER

NINETEEN

METAPOOL FACTORY

The metapool factory allows for permissionless deployment of Curve metapools.

Source code for factory contracts may be viewed on Github.

19.1 Organization

The metapool factory has several core components:

• The factory is the main contract used to deploy new metapools. It also acts a registry for finding the deployed
pools and querying information about them.

• Pools are deployed via a proxy contract. The implementation contract targetted by the proxy is determined
according to the base pool. This is the same technique used to create pools in Uniswap V1.

• Deposit contracts (“zaps”) are used for wrapping and unwrapping underlying assets when depositing into or
withdrawing from pools.

91

https://github.com/curvefi/curve-factory

Curve Documentation, Release 1.0.0

92 Chapter 19. MetaPool Factory

CHAPTER

TWENTY

METAPOOL FACTORY: DEPLOYER AND REGISTRY

The Factory contract is used to deploy new Curve pools and to find existing ones. It is deployed to the mainnet at the
following address:

0xB9fC157394Af804a3578134A6585C0dc9cc990d4

Source code for this contract is may be viewed on Github.

Warning: Please carefully review the limitations of the factory prior to deploying a new pool. Deploying a pool
using an incompatible token could result in permanent losses to liquidity providers and/or traders. Factory pools
cannot be killed and tokens cannot be rescued from them!

20.1 Deploying a Pool

Factory.deploy_metapool(_base_pool: address, _name: String[32], _symbol: String[10], _coin: address, _A:
uint256, _fee: uint256)→ address: nonpayable

Deploys a new metapool.

• _base_pool: Address of the base pool to use within the new metapool.

• _name: Name of the new metapool.

• _symbol: Symbol for the new metapool’s LP token. This value will be concatenated with the base pool
symbol.

• _coin: Address of the coin being used in the metapool

• _A: Amplification coefficient

• _fee: Trade fee, given as an integer with 1e10 precision.

Returns the address of the newly deployed pool.

>>> factory = Contract('0xB9fC157394Af804a3578134A6585C0dc9cc990d4')
>>> esd = Contract('0x36F3FD68E7325a35EB768F1AedaAe9EA0689d723')
>>> threepool = Contract('0xbEbc44782C7dB0a1A60Cb6fe97d0b483032FF1C7')

>>> tx = factory.deploy_metapool(threepool, "Empty Set Dollar", "ESD", esd,␣
→˓10, 4000000, {'from': alice})
Transaction sent:␣
→˓0x2702cfc4b96be1877f853c246be567cbe8f80ef7a56348ace1d17c026bc31b68
Gas price: 20 gwei Gas limit: 1100000 Nonce: 9

(continues on next page)

93

https://etherscan.io/address/0xB9fC157394Af804a3578134A6585C0dc9cc990d4
https://github.com/curvefi/curve-factory/blob/master/contracts/Factory.vy

Curve Documentation, Release 1.0.0

(continued from previous page)

>>> tx.return_value
"0xFD9f9784ac00432794c8D370d4910D2a3782324C"

Note: After deploying a pool, you must also add initial liquidity before the pool can be used.

20.1.1 Limitations

• The token within the new pool must expose a decimals method and use a maximum of 18 decimal places.

• The token’s transfer and transferFrom methods must revert upon failure.

• Successful token transfers must move exactly the specified number of tokens between the sender and receiver.
Tokens that take a fee upon a successful transfer may cause the pool to break or act in unexpected ways.

• Token balances must not change without a transfer. Rebasing tokens are not supported!

• Pools deployed by the factory cannot be paused or killed.

• Pools deployed by the factory are not eligible for CRV rewards.

20.1.2 Base Pools

A metapool pairs a coin against the LP token of another pool. This other pool is referred to as the “base pool”. By using
LP tokens, metapools allow swaps against any asset within their base pool, without diluting the base pool’s liquidity.

The factory allows deployment of metapools that use the following base pools:

• 3pool (USD denominated assets): 0xbEbc44782C7dB0a1A60Cb6fe97d0b483032FF1C7

• sBTC (BTC denominated assets): 0x7fC77b5c7614E1533320Ea6DDc2Eb61fa00A9714

It is possible to enable additional base pools through a DAO vote.

20.1.3 Choosing an Amplification Coefficient

The amplification co-efficient (“A”) determines a pool’s tolerance for imbalance between the assets within it. A higher
value means that trades will incure slippage sooner as the assets within the pool become imbalanced.

The appropriate value for A is dependent upon the type of coin being used within the pool. We recommend the following
values:

• Uncollateralized algorithmic stablecoins: 5-10

• Non-redeemable, collateralized assets: 100

• Redeemable assets: 200-400

It is possible to modify the amplification coefficient for a pool after it has been deployed. However, it requires a vote
within the Curve DAO and must reach a 15% quorum.

94 Chapter 20. Metapool Factory: Deployer and Registry

https://www.curve.fi/3pool
https://etherscan.io/address/0xbEbc44782C7dB0a1A60Cb6fe97d0b483032FF1C7
https://www.curve.fi/sbtc
https://etherscan.io/address/0x7fC77b5c7614E1533320Ea6DDc2Eb61fa00A9714

Curve Documentation, Release 1.0.0

20.1.4 Trade fees

Curve pools charge a fee for token exchanges and when adding or removing liquidity in an imbalanced manner. 50%
of the fees are given to liquidity providers, 50% are distributed to veCRV holders.

For factory pools, the size of the fee is set at deployment. The minimum fee is 0.04% (represented as 4000000). The
maximum fee is 1% (100000000). The fee cannot be changed after a pool has been deployed.

20.2 Finding Pools

The following getter methods are available for finding pools that were deployed via the factory:

Factory.pool_count()→ uint256: view
Returns the total number of pools that have been deployed by the factory.

Factory.pool_list(i: uint256)→ address: view
Returns the n’th entry in a zero-indexed array of deployed pools. Returns ZERO_ADDRESS when i is greater than
the number of deployed pools.

Note that because factory-deployed pools are not killable, they also cannot be removed from the registry. For
this reason the ordering of pools within this array will never change.

Factory.find_pool_for_coins(_from: address, _to: address, i: uint256 = 0)→ address: view
Finds a pool that allows for swaps between _from and _to. You can optionally include i to get the i-th pool,
when multiple pools exist for the given pairing.

The order of _from and _to does not affect the result.

Returns ZERO_ADDRESS when swaps are not possible for the pair or i exceeds the number of available pools.

>>> esd = Contract('0x36F3FD68E7325a35EB768F1AedaAe9EA0689d723')
>>> usdc = Contract('0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48')

>>> factory.find_pool_for_coins(esd, usdc)
'0xFD9f9784ac00432794c8D370d4910D2a3782324C'

20.3 Getting Pool Info

The factory has a similar API to that of the main Registry, which can be used to query information about existing pools.

20.3.1 Coins and Coin Info

Factory.get_n_coins(pool: address)→ uint256[2]: view
Get the number of coins and underlying coins within a pool.

>>> factory.get_n_coins('0xFD9f9784ac00432794c8D370d4910D2a3782324C')
(2, 4)

Factory.get_coins(pool: address)→ address[2]: view
Get a list of the swappable coins within a pool.

20.2. Finding Pools 95

Curve Documentation, Release 1.0.0

>>> factory.get_coins('0xFD9f9784ac00432794c8D370d4910D2a3782324C')
("0x36F3FD68E7325a35EB768F1AedaAe9EA0689d723",
→˓"0x6c3F90f043a72FA612cbac8115EE7e52BDe6E490")

Factory.get_underlying_coins(pool: address)→ address[8]: view
Get a list of the swappable underlying coins within a pool.

>>> factory.get_underlying_coins('0xFD9f9784ac00432794c8D370d4910D2a3782324C
→˓')
("0x36F3FD68E7325a35EB768F1AedaAe9EA0689d723",
→˓"0x6B175474E89094C44Da98b954EedeAC495271d0F",
→˓"0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48",
→˓"0xdAC17F958D2ee523a2206206994597C13D831ec7",
→˓"0x00",
→˓"0x00",
→˓"0x00",
→˓"0x00")

Factory.get_decimals(pool: address)→ uint256[8]: view
Get a list of decimal places for each coin within a pool.

>>> factory.get_decimals('0xFD9f9784ac00432794c8D370d4910D2a3782324C')
(18, 18, 0, 0, 0, 0, 0, 0)

Factory.get_underlying_decimals(pool: address)→ uint256[8]: view
Get a list of decimal places for each underlying coin within a pool.

For pools that do not involve lending, the return value is identical to Registry.get_decimals. Non-lending
coins that still involve querying a rate (e.g. renBTC) are marked as having 0 decimals.

>>> factory.get_underlying_decimals(
→˓'0xFD9f9784ac00432794c8D370d4910D2a3782324C')
(18, 18, 6, 6, 0, 0, 0, 0)

Factory.get_coin_indices(pool: address, _from: address, _to: address)→ (int128, int128, bool): view
Convert coin addresses into indices for use with pool methods.

Returns the index of _from, index of _to, and a boolean indicating if the coins are considered underlying in the
given pool.

>>> factory.get_coin_indices('0xFD9f9784ac00432794c8D370d4910D2a3782324C',
→˓'0xdac17f958d2ee523a2206206994597c13d831ec7',
→˓'0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48')
(2, 1, True)

Based on the above call, we know:

• the index of the coin we are swapping out of is 2

• the index of the coin we are swapping into is 1

• the coins are considred underlying, so we must call exchange_underlying

From this information we can perform a token swap:

96 Chapter 20. Metapool Factory: Deployer and Registry

Curve Documentation, Release 1.0.0

>>> swap = Contract('0xFD9f9784ac00432794c8D370d4910D2a3782324C')
>>> swap.exchange_underlying(2, 1, 1e18, 0, {'from': alice})

Balances and Rates

Factory.get_balances(pool: address)→ uint256[2]: view
Get available balances for each coin within a pool.

These values are not necessarily the same as calling Token.balanceOf(pool) as the total balance also includes
unclaimed admin fees.

>>> factory.get_balances('0xFD9f9784ac00432794c8D370d4910D2a3782324C')
(11428161394428689823275227, 47831326741306)

Factory.get_underlying_balances(pool: address)→ uint256[8]: view
Get balances for each underlying coin within a pool.

>>> factory.get_underlying_balances(
→˓'0xFD9f9784ac00432794c8D370d4910D2a3782324C')
(11876658145799734093379928, 48715210997790596223520238,␣
→˓46553896776332824101242804, 49543896565857325657915396, 0, 0, 0, 0)

Factory.get_admin_balances(pool: address)→ uint256[2]: view
Get the current admin balances (uncollected fees) for a pool.

>>> factory.get_admin_balances('0xFD9f9784ac00432794c8D370d4910D2a3782324C')
(10800690926373756722358, 30891687335)

Factory.get_rates(pool: address)→ uint256[2]: view
Get the exchange rates between coins and underlying coins within a pool, normalized to a 1e18 precision.

>>> factory.get_rates('0xFD9f9784ac00432794c8D370d4910D2a3782324C')
(1000000000000000000, 1018479293504725874)

20.3. Getting Pool Info 97

Curve Documentation, Release 1.0.0

98 Chapter 20. Metapool Factory: Deployer and Registry

CHAPTER

TWENTYONE

METAPOOL FACTORY: POOLS

Factory pools are permissionless metapools that can be deployed by anyone. New pools are deployed using Factory.
deploy_metapool.

Source code for the implementation contracts may be viewed on Github.

21.1 Implementation Contracts

Each pool deployed by the factory is a thin proxy contract created with Vyper’s create_forwarder_to. The imple-
mentation contract targetted by the proxy is determined based on the base pool used. This is the same technique that
was used to create pools in Uniswap V1.

The implementation contracts used for pools are deployed to the mainnet at the following addresses:

• 3pool: 0x5F890841f657d90E081bAbdB532A05996Af79Fe6

• sBTC: 0x2f956eee002b0debd468cf2e0490d1aec65e027f

When interacting with a factory pool you should use the ABI at the corresponding implementation address:

>>> implementation = Contract("0x5F890841f657d90E081bAbdB532A05996Af79Fe6")
>>> abi = implementation.abi
>>> pool = Contract.from_abi("ESD Pool",
→˓"0xFD9f9784ac00432794c8D370d4910D2a3782324C", abi)

21.2 Getting Pool Info

StableSwap.coins(i: uint256)→ address: view
Getter for the array of swappable coins within the pool. The last coin will always be the LP token of the base
pool.

>>> pool.coins(0)
'0x36F3FD68E7325a35EB768F1AedaAe9EA0689d723'

StableSwap.balances(i: uint256)→ uint256: view
Getter for the pool balances array.

>>> pool.balances(0)
4898975297808622168122

99

https://github.com/iamdefinitelyahuman/curve-factory/blob/master/contracts
https://etherscan.io/address/0x5F890841f657d90E081bAbdB532A05996Af79Fe6
https://etherscan.io/address/0x2f956eee002b0debd468cf2e0490d1aec65e027f

Curve Documentation, Release 1.0.0

StableSwap.A()→ uint256: view
The amplification coefficient for the pool.

>>> pool.A()
10

StableSwap.get_virtual_price()→ uint256: view
The current price of the pool LP token relative to the underlying pool assets. Given as an integer with 1e18
precision.

>>> pool.get_virtual_price()
1006391979770742306

StableSwap.fee()→ uint256: view
The pool swap fee, as an integer with 1e10 precision.

>>> pool.fee()
4000000

StableSwap.admin_fee()→ uint256: view
The percentage of the swap fee that is taken as an admin fee, as an integer with with 1e10 precision.

For factory pools this is hardcoded at 50% (5000000000).

>>> pool.admin_fee()
5000000000

21.3 Making Exchanges

StableSwap.get_dy(i: int128, j: int128, dx: uint256)→ uint256: view
Get the amount received (“dy”) when performing a swap between two assets within the pool.

Index values can be found using the coins public getter method, or get_coins within the factory contract.

• i: Index value of the coin to send.

• j: Index value of the coin to receive.

• dx: The amount of i being exchanged.

Returns the amount of j received.

>>> pool.get_dy(0, 1, 10**18)
460306318211728896

StableSwap.get_dy_underlying(i: int128, j: int128, dx: uint256)→ uint256: view
Get the amount received (“dy”) when swapping between two underlying assets within the pool.

Index values can be found using get_underlying_coins within the factory contract.

• i: Index value of the token to send.

• j: Index value of the token to receive.

• dx: The amount of i being exchanged.

Returns the amount of j received.

100 Chapter 21. Metapool Factory: Pools

Curve Documentation, Release 1.0.0

>>> pool.get_dy_underlying(0, 1, 10**18)
463415003137589177

StableSwap.exchange(i: int128, j: int128, dx: uint256, min_dy: uint256, _receiver: address = msg.sender)→
uint256: nonpayable

Performs an exchange between two tokens.

Index values can be found using the coins public getter method, or get_coins within the factory contract.

• i: Index value of the token to send.

• j: Index value of the token to receive.

• dx: The amount of i being exchanged.

• min_dy: The minimum amount of j to receive. If the swap would result in less, the transaction will revert.

• _receiver: An optional address that will receive j. If not given, defaults to the caller.

Returns the amount of j received in the exchange.

>>> expected = pool.get_dy(0, 1, 10**18) * 0.99
>>> pool.exchange(0, 1, 10**18, expected, {'from': alice})

StableSwap.exchange_underlying(i: int128, j: int128, dx: uint256, min_dy: uint256, _receiver: address =
msg.sender)→ uint256: nonpayable

Perform an exchange between two underlying coins.

Index values can be found using get_underlying_coins within the factory contract.

• i: Index value of the underlying token to send.

• j: Index value of the underlying token to receive.

• dx: The amount of i being exchanged.

• min_dy: The minimum amount of j to receive. If the swap would result in less, the transaction will revert.

• _receiver: An optional address that will receive j. If not given, defaults to the caller.

Returns the amount of j received in the exchange.

>>> expected = pool.get_dy_underlying(0, 3, 10**18) * 0.99
>>> pool.exchange_underlying(0, 3, 10**18, expected, {'from': alice})

21.4 Adding and Removing Liquidity

Note that if you wish to add or remove liqudity using the underlying assets within the base pool, you must use a depositor
contract.

StableSwap.calc_token_amount(_amounts: uint256[2], _is_deposit: bool)→ uint256: view
Estimate the amount of LP tokens minted or burned based on a deposit or withdrawal.

This calculation accounts for slippage, but not fees. It should be used as a basis for determining expected amounts
when calling add_liquidity or remove_liquidity_imbalance, but should not be considered to be precise!

• _amounts: Amount of each coin being deposited. Amounts correspond to the tokens at the same index
locations within coins.

• _is_deposit: set True for deposits, False for withdrawals.

21.4. Adding and Removing Liquidity 101

https://docs.python.org/3.8/library/functions.html#bool

Curve Documentation, Release 1.0.0

Returns the expected amount of LP tokens minted or burned.

StableSwap.calc_withdraw_one_coin(_burn_amount: uint256, i: int128)→ uint256: view
Calculate the amount received when withdrawing and unwrapping in a single coin. Useful for setting
_max_burn_amount when calling remove_liquidity_one_coin.

• _pool: Address of the pool to deposit into.

• _token_amount: Amount of LP tokens to burn in the withdrawal.

• i: Index value of the underlying coin to withdraw. Can be found using the coins getter method.

Returns the expected amount of coin received.

StableSwap.add_liquidity(_deposit_amounts: uint256[2], _min_mint_amount: uint256, _receiver: address =
msg.sender)→ uint256: nonpayable

Deposits coins into to the pool and mints new LP tokens.

• _deposit_amounts: List of amounts of underlying coins to deposit. Amounts correspond to the tokens
at the same index locations within coins.

• _min_mint_amount: Minimum amount of LP tokens to mint from the deposit.

• _receiver: Optional address that receives the LP tokens. If not specified, they are sent to the caller.

Returns the amount of LP tokens that were minted in the deposit.

>>> amounts = [1e18, 1e18]
>>> expected = pool.calc_token_amount(amounts, True) * 0.99
>>> pool.add_liquidity(amounts, expected, {'from': alice})

StableSwap.remove_liquidity(_burn_amount: uint256, _min_amounts: uint256[2], _receiver: address =
msg.sender)→ uint256[2]: nonpayable

Withdraws coins from the pool and burns LP tokens.

Withdrawal amounts are based on current deposit ratios. Withdrawals using this method do not incur a fee.

• _burn_amount: Quantity of LP tokens to burn in the withdrawal. Amounts correspond to the tokens at
the same index locations within coins.

• _min_amounts: Minimum amounts of coins to receive.

• _receiver: Optional address that receives the withdrawn coins. If not specified, the coins are sent to the
caller.

Returns a list of the amounts of coins that were withdrawn.

>>> amount = pool.balanceOf(alice)
>>> pool.remove_liquidity(pool, amount, 0, {'from': alice})

StableSwap.remove_liquidity_imbalance(_amounts: uint256[2], _max_burn_amount: uint256, _receiver:
address = msg.sender)→ uint256: nonpayable

Withdraw coins in an imbalanced amount.

• _amounts: List of amounts of underlying coins to withdraw. Amounts correspond to the tokens at the same
index locations within coins.

• _max_burn_amount: Maximum number of LP token to burn in the withdrawal.

• _receiver: Optional address that receives the withdrawn coins. If not specified, the coins are sent to the
caller.

Returns the amount of the LP tokens burned in the withdrawal.

102 Chapter 21. Metapool Factory: Pools

Curve Documentation, Release 1.0.0

>>> amounts = [1e18, 1e18]
>>> expected = pool.calc_token_amount(amounts, False) * 1.01
>>> pool.remove_liquidity_imbalance(pool, amounts, expected, {'from': alice}
→˓)

StableSwap.remove_liquidity_one_coin(_burn_amount: uint256, i: int128, _min_received: uint256,
_receiver: address = msg.sender)→ uint256: nonpayable

Withdraw a single asset from the pool.

• _burn_amount: Amount of LP tokens to burn in the withdrawal.

• i: Index value of the coin to withdraw. Can be found using the coins getter method.

• _min_amount: Minimum amount of the coin to receive

• _receiver: Optional address that receives the withdrawn coin. If not specified, the coin is sent to the
caller.

Returns the amount of the coin received in the withdrawal.

>>> amount = pool.balanceOf(alice)
>>> expected = pool.calc_withdraw_one_coin(pool, amount, 0) * 1.01
>>> pool.remove_liquidity_one_coin(amount, expected, 0, {'from': alice})

21.5 Claiming Admin Fees

StableSwap.withdraw_admin_fees(): nonpayable

Transfer admin fees to the fee distributor, allowing the fees to be claimed by veCRV holders.

Anyone can call this method. The destination address for the fees is hardcoded. To simplify fee distribution, this
method swaps the admin balance of the non-base pool LP token into the base pool LP token.

21.6 LP Tokens

Factory pools differ from traditional Curve pools in that the pool contract is also the LP token. This improves gas
efficiency and simplifies the factory deployment process.

Pool contracts adhere to the ERC-20 standard. As such, the following methods are available:

21.6.1 Token Info

StableSwap.name()→ String[64]: view
The name of the pool / LP token.

StableSwap.symbol()→ String[32]: view
The token symbol.

StableSwap.decimals()→ uint256: view
The number of decimals for the token. Curve pool tokens always use 18 decimals.

StableSwap.totalSupply()→ uint256: view

21.5. Claiming Admin Fees 103

https://eips.ethereum.org/EIPS/eip-20

Curve Documentation, Release 1.0.0

21.6.2 Balances and Allowances

StableSwap.balanceOf(_addr: address)→ uint256: view
Getter for the current balance of an account.

StableSwap.allowance(_owner: address, _spender: address)→ uint256: view
Getter for the number of tokens _owner has approve _spender to transfer on their behalf.

2**256-1 it is considered infinite approval. The approval amount will not decrease when tokens are transferred.

21.6.3 Transfers and Approvals

StableSwap.approve(_spender: address, _value: uint256)→ bool: nonpayable
Approve _spender to transfer up to _value tokens on behalf of the caller.

If an approval is given for 2**256-1 it is considered infinite. The approval amount will not decrease when tokens
are transferred, reducing gas costs.

• _spender Address to set the approval for

• _value Amount of the caller’s tokens that _spender is permitted to transfer

Returns True on success. Reverts on failure.

StableSwap.transfer(_to: address, _value: uint256)→ bool: nonpayable
Transfer tokens from the caller to the given address.

• _to: Address receiving the tokens.

• _value: Amount of tokens to be transferred.

Returns True on a successful call. Reverts on failure.

StableSwap.transferFrom(_from: address, _to: address, _value: uint256)→ bool: nonpayable
Transfer tokens between two addresses. The caller must have been given approval to transfer tokens on behalf of
_from or the call will revert.

• _from: The address to transfer the tokens from.

• _to: Address receiving the tokens.

• _value: mount of tokens to be transferred.

Returns True on a successful call. Reverts on failure.

104 Chapter 21. Metapool Factory: Pools

CHAPTER

TWENTYTWO

METAPOOL FACTORY: ORACLES

Factory contracts include Time-Weighted Average Price oracles. To understand these a bit better, you need to under-
stand how Curve calculates price.

A curve pool is an array of balances of the tokens it holds. To provide a price, it calculates how much of x you can
receive given amount y.

22.1 Time-Weighted Average Price oracles

MetaPool.get_price_cumulative_last()→ uint256[N_COINS]:
Returns the current time-weighted average price (TWAP). This will represent the underlying balances of the pool.

The value returned is the cumulative pool shifting balances over time

MetaPool.block_timestamp_last()→ uint256:
Returns the last timestamp that a TWAP reading was taken in unix time.

MetaPool.get_twap_balances(_first_balances: uint256[N_COINS], _last_balances: uint256[N_COINS],
_time_elapsed: uint256)→ uint256[N_COINS]:

Calculate the current effective TWAP balances given two snapshots over time, and the time elapsed between the
two snapshots.

• _first_balances: First price_cumulative_last array that was snapshot via
get_price_cumulative_last

• _last_balances: Second price_cumulative_last array that was snapshot via
get_price_cumulative_last

• _time_elapsed: The elapsed time in seconds between _first_balances and _last_balances

Returns the balances of the TWAP value.

MetaPool.get_dy(i: int128, j: int128, dx: uint256, _balances: uint256[N_COINS] = [0, 0])→ uint256:
Calculate the price for exchanging a token with index i to token with index j and amount dx given the _balances
provided.

• i: The index of the coin being sent to the pool, as it related to the metapool

• j: The index of the coin being received from the pool, as it relates to the metapool

• dx: The amount of i being sent to the pool

• _balances: The array of balances to be used for purposes of calculating the output amount / exchange
rate, this is the value returned in get_twap_balances

Returns the quote / price as dy given dx.

105

Curve Documentation, Release 1.0.0

22.2 Security

The Curve TWAP is greatly inspired by Uniswap TWAP architecture, in that the price is a cumulative value over time,
which reduces balance shifts due to flash loans, but also records the balances based on the previous block, to avoid
recording flashloan data.

106 Chapter 22. Metapool Factory: Oracles

https://uniswap.org/docs/v2/core-concepts/oracles/

CHAPTER

TWENTYTHREE

METAPOOL FACTORY: DEPOSIT CONTRACTS

Deposit contracts (also known as “zaps”) allow users to add and remove liquidity from a pool using the pool’s underlying
tokens.

23.1 Deployment Addresses

A single zap is used for all factory metapools targetting one base pool. The zaps are deployed to mainnet at the following
addresses:

• 3pool: 0xA79828DF1850E8a3A3064576f380D90aECDD3359

• sBTC: 0x7AbDBAf29929e7F8621B757D2a7c04d78d633834

23.2 Calculating Expected Amounts

DepositZap.calc_withdraw_one_coin(_pool: address, _token_amount: uint256, i: int128)→ uint256: view
Calculate the amount received when withdrawing and unwrapping in a single coin. Useful for setting
_max_burn_amount when calling remove_liquidity_one_coin.

• _pool: Address of the pool to deposit into.

• _token_amount: Amount of LP tokens to burn in the withdrawal.

• i: Index value of the underlying coin to withdraw.

Returns the expected amount of coin received.

DepositZap.calc_token_amount(_pool: address, _amounts: uint256[4], _is_deposit: bool)→ uint256: view
Calculate addition or reduction in token supply from a deposit or withdrawal.

This calculation accounts for slippage, but not fees. It should be used as a basis for determining expected amounts
when calling add_liquidity or remove_liquidity_imbalance, but should not be considered to be precise!

• _pool: Address of the pool to deposit into.

• _amounts: Amount of each underlying coin being deposited or withdrawn. Amounts correspond to the
tokens at the same index locations within Factory.get_underlying_coins.

• _is_deposit: set True for deposits, False for withdrawals.

Returns the expected amount of LP tokens received.

107

https://etherscan.io/address/0xa79828df1850e8a3a3064576f380d90aecdd3359
https://etherscan.io/address/0x7abdbaf29929e7f8621b757d2a7c04d78d633834
https://docs.python.org/3.8/library/functions.html#bool

Curve Documentation, Release 1.0.0

23.3 Adding Liquidity

DepositZap.add_liquidity(_pool: address, _deposit_amounts: uint256[4], _min_mint_amount: uint256,
_receiver: address = msg.sender)→ uint256: nonpayable

Wraps underlying coins and deposit them into _pool.

• _pool: Address of the pool to deposit into.

• _deposit_amounts: List of amounts of underlying coins to deposit. Amounts correspond to the tokens
at the same index locations within Factory.get_underlying_coins.

• _min_mint_amount: Minimum amount of LP tokens to mint from the deposit.

• _receiver: Optional address that receives the LP tokens. If not specified, they are sent to the caller.

Returns the amount of LP tokens that were minted in the deposit.

>>> zap = Contract('0x7AbDBAf29929e7F8621B757D2a7c04d78d633834')
>>> pool = Contract('0xFD9f9784ac00432794c8D370d4910D2a3782324C')

>>> amounts = [1e18, 1e18, 1e6, 1e6]
>>> expected = zap.calc_token_amount(pool, amounts, True) * 0.99
>>> zap.add_liquidity(pool, amounts, expected, {'from': alice})

23.4 Removing Liquidity

DepositZap.remove_liquidity(_pool: address, _burn_amount: uint256, _min_amounts: uint256[4], _receiver:
address = msg.sender)→ uint256[4]: nonpayable

Withdraw underlying coins from _pool.

Withdrawal amounts are based on current deposit ratios. Withdrawals using this method do not incur a fee.

• _pool: Address of the pool to withdraw from.

• _burn_amount: Quantity of LP tokens to burn in the withdrawal. Amounts correspond to the tokens at
the same index locations within Factory.get_underlying_coins.

• _min_amounts: Minimum amounts of underlying coins to receive.

• _receiver: Optional address that receives the withdrawn coins. If not specified, the coins are sent to the
caller.

Returns a list of the amounts of underlying coins that were withdrawn.

>>> zap = Contract('0x7AbDBAf29929e7F8621B757D2a7c04d78d633834')
>>> pool = Contract('0xFD9f9784ac00432794c8D370d4910D2a3782324C')

>>> amount = pool.balanceOf(alice)
>>> zap.remove_liquidity(pool, amount, 0, {'from': alice})

DepositZap.remove_liquidity_one_coin(_pool: address, _burn_amount: uint256, i: int128, _min_amount:
uint256, _receiver: address = msg.sender)→ uint256: nonpayable

Withdraw from _pool in a single coin.

• _pool: Address of the pool to withdraw from.

• _burn_amount: Amount of LP tokens to burn in the withdrawal

108 Chapter 23. Metapool Factory: Deposit Contracts

Curve Documentation, Release 1.0.0

• i: Index value of the coin to withdraw. Can be found using Factory.get_underlying_coins.

• _min_amount: Minimum amount of underlying coin to receive

• _receiver: Optional address that receives the withdrawn coin. If not specified, the coin is sent to the
caller.

Returns the amount of the underlying coin received in the withdrawal.

>>> zap = Contract('0x7AbDBAf29929e7F8621B757D2a7c04d78d633834')
>>> pool = Contract('0xFD9f9784ac00432794c8D370d4910D2a3782324C')

>>> amount = pool.balanceOf(alice)
>>> expected = zap.calc_withdraw_one_coin(pool, amount, 2) * 1.01
>>> zap.remove_liquidity_one_coin(pool, amount, expected, 2, {'from': alice}
→˓)

DepositZap.remove_liquidity_imbalance(_pool: address, _amounts: uint256[N_ALL_COINS],
_max_burn_amount: uint256, _receiver: address = msg.sender)
→ uint256: nonpayable

Withdraw coins from _pool in an imbalanced amount.

• _pool: Address of the pool to withdraw from.

• _amounts: List of amounts of underlying coins to withdraw. Amounts correspond to the tokens at the same
index locations within Factory.get_underlying_coins.

• _max_burn_amount: Maximum number of LP token to burn in the withdrawal.

• _receiver: Optional address that receives the withdrawn coins. If not specified, the coins are sent to the
caller.

Returns the amount of the LP tokens burned in the withdrawal.

>>> zap = Contract('0x7AbDBAf29929e7F8621B757D2a7c04d78d633834')
>>> pool = Contract('0xFD9f9784ac00432794c8D370d4910D2a3782324C')

>>> amounts = [1e18, 1e18, 1e6, 1e6]
>>> expected = zap.calc_token_amount(pool, amounts, False) * 1.01
>>> zap.remove_liquidity_imbalance(pool, amounts, expected, {'from': alice})

Note: The deposit contract must be approved to transfer _max_burn_amount LP tokens from the caller or the
transaction will fail.

23.4. Removing Liquidity 109

Curve Documentation, Release 1.0.0

110 Chapter 23. Metapool Factory: Deposit Contracts

CHAPTER

TWENTYFOUR

METAPOOL FACTORY: LIQUIDITY MIGRATOR

The PoolMigrator contract is used for migrating liquidity between Curve factory pools. It is deployed to the mainnet
at the following address:

0xd6930b7f661257DA36F93160149b031735237594

Source code for this contract is may be viewed on Github.

24.1 Migrating Liquidity between Pools

Factory.migrate_to_new_pool(_old_pool: address, _new_pool: address, _amount: uint256)→ uint256:
Migrate liquidity between two pools.

Each pool must be deployed by the curve factory (v1 or v2) and contain identical assets. Depending on the
imbalance of each pool, the migration may incur slippage or provide a bonus.

Prior to calling this method, the caller must have given approval for the migrator to transfer up to _amount LP
tokens from _old_pool.

• _old_pool: Address of the pool to migrate from

• _new_pool: Address of the pool to migrate into

• _amount: Number of _old_pool LP tokens to migrate

Returns the number of _new_pool LP tokens received in the migration.

>>> migrator = Contract('0xd6930b7f661257DA36F93160149b031735237594')
>>> old_pool = Contract('0x36F3FD68E7325a35EB768F1AedaAe9EA0689d723')
>>> new_pool = Contract('0x83D2944d5fC10A064451Dc5852f4F47759F249B6')

>>> balance = old_pool.balanceOf(alice)

>>> old_pool.approve(migrator, balance, {'from': alice})
Transaction sent:␣
→˓0x8fc0dc0844ccbbed63d9cb7f2820087db5f70b320efea7ef4ce6b4a678e3cd45
Gas price: 20 gwei Gas limit: 1100000 Nonce: 9

>>> migrator.migrate_to_new_pool(old_pool, new_pool, balance, {'from':␣
→˓alice})
Transaction sent:␣
→˓0xd65182491c13b2620f84fe2d501ace5c8ab1cda1b9ea54d40f4f2351cccd52b6
Gas price: 20 gwei Gas limit: 1100000 Nonce: 10

111

https://etherscan.io/address/0xd6930b7f661257DA36F93160149b031735237594
https://github.com/curvefi/curve-factory/blob/master/contracts/PoolMigrator.vy

Curve Documentation, Release 1.0.0

112 Chapter 24. Metapool Factory: Liquidity Migrator

CHAPTER

TWENTYFIVE

CONTRIBUTOR GUIDE

Curve is open-source and consists of a number of repositories on Github. Contributions are welcome!

On-chain contracts are spread across different Curve repositories as such:

• curve-contract: contracts for Curve stable swap pools

• curve-dao-contracts: contracts owned by DAO (e.g., liquidity gauges, burners and fee distributor)

• curve-pool-registry: contracts for on-chain information on pools and swaps

In order to make contributing to Curve as seamless as possible, please read thoroughly through these contribution
guidelines.

113

https://github.com/curvefi/
https://github.com/curvefi/curve-contract
https://github.com/curvefi/curve-dao-contracts
https://github.com/curvefi/curve-pool-registry

Curve Documentation, Release 1.0.0

114 Chapter 25. Contributor Guide

CHAPTER

TWENTYSIX

GENERAL

26.1 Commit Messages

Contributors should adhere to the following standards and best practices when making commits to be merged into the
Curve codebase.

26.1.1 Conventional Commits

Commit messages should adhere to the Conventional Commits standard. A conventional commit message is structured
as follows:

<type>[optional scope]: <description>

[optional body]

[optional footer]

The commit contains the following elements, to communicate intent to the consumers of your library:

• fix: a commit of the type fix patches a bug in your codebase (this correlates with PATCH in semantic versioning).

• feat: a commit of the type feat introduces a new feature to the codebase (this correlates with MINOR in semantic
versioning).

• BREAKING CHANGE: a commit that has the text BREAKING CHANGE: at the beginning of its optional body
or footer section introduces a breaking API change. A BREAKING CHANGE can be part of commits of any
type.

The use of commit types other than fix: and feat: is recommended. For example: docs:, style:, refactor:,
test:, chore:, or improvement:.

26.1.2 Best Practices

We recommend the following best practices for commit messages (taken from How To Write a Commit Message:

• Limit the subject line to 50 characters.

• Use imperative, present tense in the subject line.

• Capitalize the subject line.

• Do not end the subject line with a period.

• Separate the subject from the body with a blank line.

115

https://www.conventionalcommits.org/
https://chris.beams.io/posts/git-commit/

Curve Documentation, Release 1.0.0

• Wrap the body at 72 characters.

• Use the body to explain what and why vs. how.

26.2 Github Standard Fork and Pull Request Workflow

Original version: https://gist.github.com/Chaser324/ce0505fbed06b947d962

Whether you’re trying to give back to the open source community or collaborating on your own projects, knowing how
to properly fork and generate pull requests is essential. Unfortunately, it’s quite easy to make mistakes or not know
what you should do when you’re initially learning the process. I know that I certainly had considerable initial trouble
with it, and I found a lot of the information on GitHub and around the internet to be rather piecemeal and incomplete -
part of the process described here, another there, common hangups in a different place, and so on.

In an attempt to coallate this information for myself and others, this short tutorial is what I’ve found to be fairly standard
procedure for creating a fork, doing your work, issuing a pull request, and merging that pull request back into the original
project.

26.2.1 Creating a Fork

Just head over to the GitHub page and click the “Fork” button. It’s just that simple. Once you’ve done that, you can use
your favorite git client to clone your repo or just head straight to the command line:

Clone your fork to your local machine
git clone git@github.com:USERNAME/FORKED-PROJECT.git

26.2.2 Keeping Your Fork Up to Date

While this isn’t an absolutely necessary step, if you plan on doing anything more than just a tiny quick fix, you’ll want
to make sure you keep your fork up to date by tracking the original “upstream” repo that you forked. To do this, you’ll
need to add a remote:

Add 'upstream' repo to list of remotes
git remote add upstream https://github.com/UPSTREAM-USER/ORIGINAL-PROJECT.git

Verify the new remote named 'upstream'
git remote -v

Whenever you want to update your fork with the latest upstream changes, you’ll need to first fetch the upstream repo’s
branches and latest commits to bring them into your repository:

Fetch from upstream remote
git fetch upstream

View all branches, including those from upstream
git branch -va

Now, checkout your own master branch and merge the upstream repo’s master branch:

Checkout your master branch and merge upstream
git checkout master
git merge upstream/master

116 Chapter 26. General

Curve Documentation, Release 1.0.0

If there are no unique commits on the local master branch, git will simply perform a fast-forward. However, if you have
been making changes on master (in the vast majority of cases you probably shouldn’t be), you may have to deal with
conflicts. When doing so, be careful to respect the changes made upstream.

Now, your local master branch is up-to-date with everything modified upstream.

26.2.3 Doing Your Work

Create a Branch

Whenever you begin work on a new feature or bugfix, it’s important that you create a new branch. Not only is it proper
git workflow, but it also keeps your changes organized and separated from the master branch so that you can easily
submit and manage multiple pull requests for every task you complete.

To create a new branch and start working on it:

Checkout the master branch - you want your new branch to come from master
git checkout master

Create a new branch named newfeature (give your branch its own simple informative name)
git branch newfeature

Switch to your new branch
git checkout newfeature

Now, go to town hacking away and making whatever changes you want to.

26.2.4 Submitting a Pull Request

Cleaning Up Your Work

Prior to submitting your pull request, you might want to do a few things to clean up your branch and make it as simple
as possible for the original repo’s maintainer to test, accept, and merge your work.

If any commits have been made to the upstream master branch, you should rebase your development branch so that
merging it will be a simple fast-forward that won’t require any conflict resolution work.

Fetch upstream master and merge with your repo's master branch
git fetch upstream
git checkout master
git merge upstream/master

If there were any new commits, rebase your development branch
git checkout newfeature
git rebase master

Now, it may be desirable to squash some of your smaller commits down into a small number of larger more cohesive
commits. You can do this with an interactive rebase:

Rebase all commits on your development branch
git checkout
git rebase -i master

This will open up a text editor where you can specify which commits to squash.

26.2. Github Standard Fork and Pull Request Workflow 117

Curve Documentation, Release 1.0.0

Submitting

Once you’ve committed and pushed all of your changes to GitHub, go to the page for your fork on GitHub, select your
development branch, and click the pull request button. If you need to make any adjustments to your pull request, just
push the updates to GitHub. Your pull request will automatically track the changes on your development branch and
update.

26.2.5 Accepting and Merging a Pull Request

Take note that unlike the previous sections which were written from the perspective of someone that created a fork and
generated a pull request, this section is written from the perspective of the original repository owner who is handling
an incoming pull request. Thus, where the “forker” was referring to the original repository as upstream, we’re now
looking at it as the owner of that original repository and the standard origin remote.

Checking Out and Testing Pull Requests

Open up the .git/config file and add a new line under [remote "origin"]:

fetch = +refs/pull/*/head:refs/pull/origin/*

Now you can fetch and checkout any pull request so that you can test them:

Fetch all pull request branches
git fetch origin

Checkout out a given pull request branch based on its number
git checkout -b 999 pull/origin/999

Keep in mind that these branches will be read only and you won’t be able to push any changes.

Automatically Merging a Pull Request

In cases where the merge would be a simple fast-forward, you can automatically do the merge by just clicking the button
on the pull request page on GitHub.

Manually Merging a Pull Request

To do the merge manually, you’ll need to checkout the target branch in the source repo, pull directly from the fork, and
then merge and push.

Checkout the branch you're merging to in the target repo
git checkout master

Pull the development branch from the fork repo where the pull request development was␣
→˓done.
git pull https://github.com/forkuser/forkedrepo.git newfeature

Merge the development branch
git merge newfeature

(continues on next page)

118 Chapter 26. General

Curve Documentation, Release 1.0.0

(continued from previous page)

Push master with the new feature merged into it
git push origin master

Now that you’re done with the development branch, you’re free to delete it.

`shell git branch -d newfeature `

26.3 Creating A New Repository

For some contributions it may be required to create a new Curve repository. The Curve repositories aim to employ a
consistent code style. In order to make new repositories adhere to this style, there exists a Curve repository template,
which should be used.

The template repository can be found here. This template already contains dependencies and formatting rules in line
with the Curve style guidelines.

Copyright
Copyright 2017, Chase Pettit

MIT License, http://www.opensource.org/licenses/mit-license.php

Additional Reading
• Atlassian - Merging vs. Rebasing

Sources
• GitHub - Fork a Repo

• GitHub - Syncing a Fork

• GitHub - Checking Out a Pull Request

26.3. Creating A New Repository 119

https://github.com/curvefi
https://github.com/curvefi/curve-base-repo
http://www.opensource.org/licenses/mit-license.php
https://www.atlassian.com/git/tutorials/merging-vs-rebasing
https://help.github.com/articles/fork-a-repo
https://help.github.com/articles/syncing-a-fork
https://help.github.com/articles/checking-out-pull-requests-locally

Curve Documentation, Release 1.0.0

120 Chapter 26. General

CHAPTER

TWENTYSEVEN

TESTING

Curve development follows a strong testing methodology. While testing Ethereum-based protocols can be challenging,
the Curve test suite is a powerful tool that shall be used by contributors to help facilitate this task. While the repositories
curve-contract, curve-dao-contracts and curve-pool-registry are all stand alone repositories where each
repo employs its own test suite, the test suite designs are very similar.

This section outlines how the test suite should be used most effectively for the curve-contracts repository.

27.1 Curve Contracts

Test cases for Curve pools are organized across the following subdirectories:

• forked: Tests designed for use in a forked mainnet

• fixtures: Pytest fixtures

• pools: Tests for pool contracts

• token: Tests for LP token contracts

• zaps: Tests for deposit contracts

Other files:

• conftest.py: Base configuration file for the test suite.

• simulation.py: A python model of the math used within Curve’s contracts. Used for testing expected outcomes
with actual results.

27.1.1 Organization

• Tests are organized by general category, then split between unitary and integration tests.

• Common tests for all pools are located in tests/pools/common, for zaps in tests/zaps/common.

• Common metapool tests are located at tests/pools/meta, for zaps in tests/zaps/meta.

• Valid pool names are the names of the subdirectories within contracts/pools.

• For pool templates, prepend template- to the subdirectory names within contracts/pool-templates. For
example, the base template is template-base.

121

https://github.com/curvefi/curve-contract/tree/master/tests
https://docs.pytest.org/en/latest/fixture.html
https://github.com/curvefi/curve-contract/blob/master/tests/conftest.py
https://github.com/curvefi/curve-contract/blob/master/tests/simulation.py

Curve Documentation, Release 1.0.0

Pool Type Tests

Note that the test suite targets tests also on a pool type basis. A Curve pool may be of one or more types. The supported
pool types are:

• arate: These are aToken-style pools (interest accrues as balance increases)

• crate: These are cToken-style pools (interest accrues as rate increases)

• eth: These are pools that have ETH as one of their tokens

• meta: These are metapools

An example of a pool of a single type would be the aave pool, which is of type arate.

An example of a pool of multiple types would be the steth pool, which is of the types eth and arate.

The type of a pool is given by the key value pair "pool_types": [<POOL_TYPE>, ...] in a pool’s pooldata.
json file. If no type is specified, the pool is by default a template-base-style pool.When running tests, the test
suit targets pool type-specific tests if they exist. To add a pool type-specific test, place the new test into the pool type
subdirectory (e.g., meta for metapool tests).

Pool-specific Tests

There may be pools for which it is required to write multiple tests, which are not applicable to other pools. Rather than
using decorators to skip (see below) other pools on an individual or type basis, a new subdirectory named after the
pool can be created to contain the pool-specific tests.

When the test suite is started, for a given pool, all tests for the pool’s type get run, as well as any existing pool-specific
tests.

For example, assuming there exists a new metapool called foo, specifying "pool_types": ["meta"] in the pool’s
pooldata.json would ensure that all metapool tests get run. Let’s assume there is a token in the pool, which has
behavior that is currently not captured by any of the meta or common tests that get currently run for the foo pool. To
ensure we test the foo pool’s behavior thoroughly, new tests should be created and added in a newly created tests/
pools/foo/ subdirectory.

27.1.2 Running the tests

To run the entire suite:

brownie test

Note that this executes over 10,000 tests and may take a significant amount of time to finish.

Test Collection Filters

The test suite is divided into several logical categories. Tests may be filtered using one or more flags:

• --pool <POOL NAME>: only run tests against a specific pool

• --integration: only run integration tests (tests within an integration/ subdirectory)

• --unitary: only run unit tests (tests NOT found in an integration/ subdirectory)

For example, to only run the unit tests for 3pool:

122 Chapter 27. Testing

Curve Documentation, Release 1.0.0

brownie test --pool 3pool --unitary

Testing against a forked mainnet

To run the test suite against a forked mainnet:

brownie test --network mainnet-fork

In this mode, the actual underlying and wrapped coins are used for testing. Note that forked mode can be very slow,
especially if you are running against a public node.

27.1.3 Fixtures

Test fixtures are located within the tests/fixture subdirectory. New fixtures should be added here instead of within the
base conftest.py.

All fixtures are [documented](fixtures/README.md) within the fixtures subdirectory readme.

27.1.4 Markers

We use the following custom markers to parametrize common tests across different pools:

skip_pool(*pools)

Exclude one or more pools from the given test.

@pytest.mark.skip_pool("compound", "usdt", "y")
def test_only_some_pools(swap):

...

skip_pool_type(*pool_types)

Exclude specific pool types from the given test.

@pytest.mark.skip_pool_type("meta", "eth")
def test_not_metapools(swap):

...

target_pool(*pools)

Only run the given test against one or more pools specified in the marker.

@pytest.mark.target_pool("ren", "sbtc")
def test_btc_pools(swap):

...

27.1. Curve Contracts 123

https://github.com/curvefi/curve-contract/tree/master/tests/fixtures
https://github.com/curvefi/curve-contract/blob/master/tests/conftest.py
https://docs.pytest.org/en/stable/example/markers.html

Curve Documentation, Release 1.0.0

skip_meta

Exclude metapools from the given test.

@pytest.mark.skip_meta
def test_not_metapools(swap):

...

lending

Only run the given test against pools that involve lending.

@pytest.mark.lending
def test_underlying(swap):

...

zap

Only run the given test against pools that use a deposit contract.

@pytest.mark.zap
def test_deposits(zap):

...

itercoins(*arg, underlying=False)

Parametrizes each of the given arguments with a range of numbers equal to the total number of coins for the given pool.
When multiple arguments are given, each argument has a unique value for every generated test.

For example, itercoins("send", "recv") with a pool of 3 coins will parametrize with the sequence [(0, 1),
(0, 2), (1, 0), (1, 2), (2, 0), (2, 1)].

If underlying is set as True, the upper bound of iteration corresponds to the true number of underlying coins. This
is useful when testing metapools.

@pytest.mark.itercoins("send", "recv"):
def test_swap(accounts, swap, send, recv):

swap.exchange(send, recv, 0, 0, {'from': accounts[0]})

124 Chapter 27. Testing

CHAPTER

TWENTYEIGHT

CODE STYLE

28.1 Vyper Style Guide

This document outlines the Vyper code style, structure and practices followed by the Curve development team.

Note that this guide is still under development. Do not hesitate to ask if anything is missing or unclear.

28.1.1 Project Organization

Contracts should be structured so that components are logically grouped together. Maintaining a consistent order makes
it easier for the reader to locate code.

Each logical section should be separated by two blank lines. Within each section, multi-line statements should be
seperated by one blank line. Single-line statements should have no blank lines between them, except to denote a logical
seperation.

Content should be ordered as follows:

1. Import statements

2. Implements statements

3. Inlined interfaces

4. Events

5. Structs

6. Constants

7. Storage variables

8. Constructor function

9. Fallback function

10. Regular functions

125

https://vyper.readthedocs.io/en/stable/interfaces.html#importing-interfaces
https://vyper.readthedocs.io/en/stable/interfaces.html#implementing-an-interface
https://vyper.readthedocs.io/en/stable/interfaces.html#declaring-and-using-interfaces
https://vyper.readthedocs.io/en/stable/event-logging.html#declaring-events
https://vyper.readthedocs.io/en/stable/types.html#structs
https://vyper.readthedocs.io/en/stable/constants-and-vars.html#custom-constants
https://vyper.readthedocs.io/en/stable/structure-of-a-contract.html#state-variables
https://vyper.readthedocs.io/en/stable/control-structures.html#the-init-function
https://vyper.readthedocs.io/en/stable/control-structures.html#the-default-function
https://vyper.readthedocs.io/en/stable/control-structures.html#functions

Curve Documentation, Release 1.0.0

Imports and Interfaces

Contracts must be self contained. Import statements may only be used for built-in interfaces. Other interfaces are
always inlined. This aids readability and simplifies the process of source verification on Etherscan.

Inlined interfaces should only include required functions (those that are called within the contract). Interfaces and the
functions within should be sorted alphabetically. Each interface should be seperated by one blank line.

Events and Structs

Events and structs should be sorted alphabetically. Each definition should be seperated by one blank line, with two
blank lines between the last event and the first struct.

Constants and Storage Variables

Constants should always be defined before storage variables, except when there is a logical reason to group them
otherwise. Variable definitions should not be seperated by blank lines, but a single blank line can be used to create
logical groupings.

Functions

The constructor function must always be first, followed by the fallback function (if the contract includes one). Regular
functions should be logically grouped. Each function should be seperated by two blank lines.

28.1.2 Naming Conventions

Names adhere to PEP 8 naming conventions:

• Events, interfaces and structs use the CapWords convention.

• Function names are lowercase, with words separated by underscores when it improves readability. The only
exception when adhering to a common interface such as ERC20.

• Constants use all capital letters with underscores separating words.

• Variables follow the same conventions as functions.

Leading Underscores

A single leading underscore marks an object as private or immutable.

• For functions, a leading underscore indicates that the function is internal.

• For variables, a leading underscore is used to indicate that the variable exists in calldata.

126 Chapter 28. Code Style

https://www.python.org/dev/peps/pep-0008/#prescriptive-naming-conventions

Curve Documentation, Release 1.0.0

Booleans

• Boolean values should be prefixed with is_.

• Booleans must not represent negative properties, (e.g. is_not_set). This can result in double-negative evalu-
ations which are not intuitive for readers.

28.1.3 Code Style

As Vyper is syntactically similar to Python, all code should conform to the PEP 8 style guide with the following
exceptions:

• Maximum line length of 100

In general, we try to mimick the same linting process as would be applied by black if the code were Python.

Decorators

Function decorators should be ordered according to mutability, visibility, re-entrancy:

@view
@external
@nonreentrant('lock')
def foo():

Function Inputs

All input variables should be prepended with a single leading underscore to denote their immutability. The only
exception is if the variable name is a single letter (such as i and j for the swap contract exchange methods).

Where possible, the entire function signature should be kept on a single line:

def foo(_goo: address, _bar: uint256, _baz: uint256) -> bool:

If this line would exceed 100 characters, each input argument should instead be placed on a new line and indented:

def multiline_foo(
_goo: address,
_bar: uint256,
_baz: uint256,

) -> bool:

Revert Strings

Revert strings must not exceed a maximum length of 32 characters. They should only be used in functions that are
expected to be frequently called by average users. For other situations you should use a dev revert comment.

28.1. Vyper Style Guide 127

https://www.python.org/dev/peps/pep-0008
https://github.com/psf/black/blob/master/docs/the_black_code_style.md
https://vyper.readthedocs.io/en/stable/control-structures.html#mutability
https://vyper.readthedocs.io/en/stable/control-structures.html#visibility
https://vyper.readthedocs.io/en/stable/control-structures.html#re-entrancy-locks
https://eth-brownie.readthedocs.io/en/stable/tests-pytest-intro.html#developer-revert-comments

Curve Documentation, Release 1.0.0

128 Chapter 28. Code Style

CHAPTER

TWENTYNINE

PYTHON STYLE GUIDE

This document outlines the Python code style, structure and practices followed by the Curve development team.

Note that this guide is still under development. Do not hesitate to ask if anything is missing or unclear.

29.1 Linting and Pre-Commit Hooks

We use pre-commit hooks to simplify linting and ensure consistent formatting among contributors. Use of pre-commit
is not a requirement, but is highly recommended.

Install pre-commit locally from the brownie root folder:

pip install pre-commit
pre-commit install

Commiting will now automatically run the local hooks and ensure that your commit passes all lint checks.

29.1.1 Naming Conventions

Names must adhere to PEP 8 naming conventions:

• Modules have short, all-lowercase names. Underscores can be used in the module name if it improves readability.

• Class names use the CapWords convention.

• Exceptions follow the same conventions as other classes.

• Function names are lowercase, with words separated by underscores when it improves readability.

• Method names and instance variables follow the same conventions as functions.

• Constants use all capital letters with underscores separating words.

Leading Underscores

A single leading underscore marks an object as private.

• Classes and functions with one leading underscore are only used in the module where they are declared. They
must not be imported.

• Class attributes and methods with one leading underscore must only be accessed by methods within the same
class.

129

https://pre-commit.com/
https://www.python.org/dev/peps/pep-0008/#prescriptive-naming-conventions

Curve Documentation, Release 1.0.0

Booleans

• Boolean values should be prefixed with is_.

• Booleans must not represent negative properties, (e.g. is_not_set). This can result in double-negative evalu-
ations which are not intuitive for readers.

• Methods that return a single boolean should use the @property decorator.

Methods

The following conventions should be used when naming functions or methods. Consistent naming provides logical
consistency throughout the codebase and makes it easier for future readers to understand what a method does (and does
not) do.

• get_: For simple data retrieval without any side effects.

• fetch_: For retreivals that may have some sort of side effect.

• build_: For creation of a new object that is derived from some other data.

• set_: For adding a new value or modifying an existing one within an object.

• add_: For adding a new attribute or other value to an object. Raises an exception if the value already exists.

• replace_: For mutating an object. Should return None on success or raise an exception if something is wrong.

• compare_: For comparing values. Returns True or False, does not raise an exception.

• validate_: Returns None or raises an exception if something is wrong.

• from_: For class methods that instantiate an object based on the given input data.

For other functionality, choose names that clearly communicate intent without being overly verbose. Focus on what
the method does, not on how the method does it.

29.1.2 Code Style

All code must conform to the PEP 8 style guide with the following exceptions:

• Maximum line length of 100

We handle code formatting with black. This ensures a consistent style across the project and saves time by not having
to be opinionated.

Imports

Import sequencing is handled with isort. We follow these additional rules:

130 Chapter 29. Python Style Guide

https://www.python.org/dev/peps/pep-0008
https://github.com/psf/black
https://github.com/timothycrosley/isort

Curve Documentation, Release 1.0.0

Standard Library Imports

Standard libraries should be imported absolutely and without aliasing. Importing the library aids readability, as other
users may be familiar with that library.

Good
import os
os.stat('.')

Bad
from os import stat
stat('.')

Strings

Strings substitutions should be performed via formatted string literals rather than the str.format method or other tech-
niques.

29.1. Linting and Pre-Commit Hooks 131

https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals

Curve Documentation, Release 1.0.0

132 Chapter 29. Python Style Guide

CHAPTER

THIRTY

DEPLOYMENT ADDRESSES

Here is a list of all current contract deployments within the Curve protocol.

Note: If you find an address which is missing or incorrect, feel free to create a pull request as specified here.

30.1 Base Pools

Base pools in Curve contain two or more tokens and implement the Curve stable swap exchange mechanism. Note that
for a single base or meta pool there are multiple deployed contracts, which are of the following formats:

• StableSwap<pool>.vy: Curve stablecoin AMM contract

• Deposit<pool>.vy: contract used to wrap underlying tokens prior to depositing them into the pool (not always
required)

• CurveContract<version>.vy: LP token contract for the pool

Here is a list of all base pool contracts currently in use:

Pool Source Address
3Pool StableSwap3Pool.vy 0xbEbc44782C7dB0a1A60Cb6fe97d0b483032FF1C7
3Pool CurveTokenV2.vy 0x6c3F90f043a72FA612cbac8115EE7e52BDe6E490
AAVE CurveTokenV3.vy 0xFd2a8fA60Abd58Efe3EeE34dd494cD491dC14900
AAVE StableSwapAave.vy 0xDeBF20617708857ebe4F679508E7b7863a8A8EeE
ankrETH StableSwapAETH.vy 0xA96A65c051bF88B4095Ee1f2451C2A9d43F53Ae2
ankrETH CurveTokenV3.vy 0xaA17A236F2bAdc98DDc0Cf999AbB47D47Fc0A6Cf
BUSD StableSwapBUSD.vy 0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27
BUSD DepositBUSD.vy 0xb6c057591E073249F2D9D88Ba59a46CFC9B59EdB
BUSD CurveTokenV1.vy 0x3B3Ac5386837Dc563660FB6a0937DFAa5924333B
Compound StableSwapCompound.vy 0xA2B47E3D5c44877cca798226B7B8118F9BFb7A56
Compound DepositCompound.vy 0xeB21209ae4C2c9FF2a86ACA31E123764A3B6Bc06
Compound CurveContractV1.vy 0x845838DF265Dcd2c412A1Dc9e959c7d08537f8a2
EURS StableSwapEURS.vy 0x0Ce6a5fF5217e38315f87032CF90686C96627CAA
EURS CurveTokenV3.vy 0x194eBd173F6cDacE046C53eACcE9B953F28411d1
hBTC StableSwapHBTC.vy 0x4CA9b3063Ec5866A4B82E437059D2C43d1be596F
hBTC CurveTokenV2.vy 0xb19059ebb43466C323583928285a49f558E572Fd
IronBank StableSwapIB.vy 0x2dded6Da1BF5DBdF597C45fcFaa3194e53EcfeAF
IronBank CurveTokenV3.vy 0x5282a4eF67D9C33135340fB3289cc1711c13638C
Link StableSwapLINK.vy 0xF178C0b5Bb7e7aBF4e12A4838C7b7c5bA2C623c0

continues on next page

133

https://github.com/curvefi/curve-docs
https://www.curve.fi/stableswap-paper.pdf
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/3pool/StableSwap3Pool.vy
https://etherscan.io/address/0xbebc44782c7db0a1a60cb6fe97d0b483032ff1c7#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy
https://etherscan.io/address/0x6c3F90f043a72FA612cbac8115EE7e52BDe6E490#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy
https://etherscan.io/address/0xFd2a8fA60Abd58Efe3EeE34dd494cD491dC14900#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/aave/StableSwapAave.vy
https://etherscan.io/address/0xDeBF20617708857ebe4F679508E7b7863a8A8EeE#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/aeth/StableSwapAETH.vy
https://etherscan.io/address/0xA96A65c051bF88B4095Ee1f2451C2A9d43F53Ae2#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy
https://etherscan.io/address/0xaA17A236F2bAdc98DDc0Cf999AbB47D47Fc0A6Cf#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/busd/StableSwapBUSD.vy
https://etherscan.io/address/0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/busd/DepositBUSD.vy
https://etherscan.io/address/0xb6c057591e073249f2d9d88ba59a46cfc9b59edb#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV1.vy
https://etherscan.io/address/0x3B3Ac5386837Dc563660FB6a0937DFAa5924333B#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/compound/StableSwapCompound.vy
https://etherscan.io/address/0xA2B47E3D5c44877cca798226B7B8118F9BFb7A56#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/compound/DepositCompound.vy
https://etherscan.io/address/0xeb21209ae4c2c9ff2a86aca31e123764a3b6bc06#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV1.vy
https://etherscan.io/address/0x845838DF265Dcd2c412A1Dc9e959c7d08537f8a2#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/eurs/StableSwapEURS.vy
https://etherscan.io/address/0x0Ce6a5fF5217e38315f87032CF90686C96627CAA#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy
https://etherscan.io/address/0x194eBd173F6cDacE046C53eACcE9B953F28411d1#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/hbtc/StableSwapHBTC.vy
https://etherscan.io/address/0x4CA9b3063Ec5866A4B82E437059D2C43d1be596F#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy
https://etherscan.io/address/0xb19059ebb43466C323583928285a49f558E572Fd#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/ib/StableSwapIB.vy
https://etherscan.io/address/0x2dded6Da1BF5DBdF597C45fcFaa3194e53EcfeAF#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy
https://etherscan.io/address/0x5282a4eF67D9C33135340fB3289cc1711c13638C#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/link/StableSwapLINK.vy
https://etherscan.io/address/0xF178C0b5Bb7e7aBF4e12A4838C7b7c5bA2C623c0#code

Curve Documentation, Release 1.0.0

Table 1 – continued from previous page
Pool Source Address
Link CurveTokenV3.vy 0xcee60cfa923170e4f8204ae08b4fa6a3f5656f3a
PAX DepositPax.vy 0xA50cCc70b6a011CffDdf45057E39679379187287
PAX StableSwapPax.vy 0x06364f10B501e868329afBc005b3492902d6C763
PAX CurveTokenV1.vy 0xD905e2eaeBe188fc92179b6350807D8bd91Db0D8
renBTC StableSwapRen.vy 0x93054188d876f558f4a66B2EF1d97d16eDf0895B
renBTC CurveTokenV1.vy 0x49849C98ae39Fff122806C06791Fa73784FB3675
rETH StableSwapRETH.vy 0xF9440930043eb3997fc70e1339dBb11F341de7A8
rETH CurveTokenV3.vy 0x53a901d48795C58f485cBB38df08FA96a24669D5
sAAVE StableSwapSAAVE.vy 0xEB16Ae0052ed37f479f7fe63849198Df1765a733
sAAVE CurveTokenV3.vy 0x02d341CcB60fAaf662bC0554d13778015d1b285C
sBTC StableSwapSBTC.vy 0x7fC77b5c7614E1533320Ea6DDc2Eb61fa00A9714
sBTC CurveTokenV1.vy 0x075b1bb99792c9E1041bA13afEf80C91a1e70fB3
sETH StableSwapSETH.vy 0xc5424B857f758E906013F3555Dad202e4bdB4567
sETH CurveTokenV3.vy 0xA3D87FffcE63B53E0d54fAa1cc983B7eB0b74A9c
stETH StableSwapSTETH.vy 0xDC24316b9AE028F1497c275EB9192a3Ea0f67022
stETH CurveTokenV3.vy 0x06325440D014e39736583c165C2963BA99fAf14E
sUSD DepositSUSD.vy 0xFCBa3E75865d2d561BE8D220616520c171F12851
sUSD StableSwapSUSD.vy 0xA5407eAE9Ba41422680e2e00537571bcC53efBfD
sUSD CurveTokenV1.vy 0xC25a3A3b969415c80451098fa907EC722572917F
TriCrypto CurveCryptoSwap.vy 0x80466c64868E1ab14a1Ddf27A676C3fcBE638Fe5
TriCrypto DepositZap.vy 0x331aF2E331bd619DefAa5DAc6c038f53FCF9F785
TriCrypto CurveTokenV4.vy 0xcA3d75aC011BF5aD07a98d02f18225F9bD9A6BDF
USDT DepositUSDT.vy 0xac795D2c97e60DF6a99ff1c814727302fD747a80
USDT StableSwapUSDT.vy 0x52EA46506B9CC5Ef470C5bf89f17Dc28bB35D85C
USDT CurveTokenV1.vy 0x9fC689CCaDa600B6DF723D9E47D84d76664a1F23
Y DepositY.vy 0xbBC81d23Ea2c3ec7e56D39296F0cbB648873a5d3
Y StableSwapY.vy 0x45F783CCE6B7FF23B2ab2D70e416cdb7D6055f51
Y CurveTokenV1.vy 0xdF5e0e81Dff6FAF3A7e52BA697820c5e32D806A8
Yv2 StableSwapYv2.vy 0x8925D9d9B4569D737a48499DeF3f67BaA5a144b9
Yv2 CurveTokenV3.vy 0x571FF5b7b346F706aa48d696a9a4a288e9Bb4091

30.2 MetaPools

Metapools allow for one token to seemingly trade with another underlying base pool. For instance, the GUSD metapool
([GUSD, [3Pool]]) contains GUSD and LP tokens of the 3pool (3CRV). This allows for trades between GUSD and
any of the three tokens from the 3Pool (DAI, USDC and USDT).

Here is a list of all meta pools currently in use:

Pool Source Address
bBTC StableSwapBBTC.vy 0x071c661B4DeefB59E2a3DdB20Db036821eeE8F4b
bBTC DepositBBTC.vy 0xC45b2EEe6e09cA176Ca3bB5f7eEe7C47bF93c756
bBTC CurveTokenV3.vy 0x410e3E86ef427e30B9235497143881f717d93c2A
DUSD DepositDUSD.vy 0x61E10659fe3aa93d036d099405224E4Ac24996d0
DUSD StableSwapDUSD.vy 0x8038C01A0390a8c547446a0b2c18fc9aEFEcc10c
DUSD CurveTokenV2.vy 0x3a664Ab939FD8482048609f652f9a0B0677337B9
GUSD StableSwapGUSD.vy 0x4f062658EaAF2C1ccf8C8e36D6824CDf41167956
GUSD DepositGUSD.vy 0x64448B78561690B70E17CBE8029a3e5c1bB7136e

continues on next page

134 Chapter 30. Deployment Addresses

https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy
https://etherscan.io/address/0xcee60cfa923170e4f8204ae08b4fa6a3f5656f3a#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/pax/DepositPax.vy
https://etherscan.io/address/0xa50ccc70b6a011cffddf45057e39679379187287#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/pax/StableSwapPax.vy
https://etherscan.io/address/0x06364f10B501e868329afBc005b3492902d6C763#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV1.vy
https://etherscan.io/address/0xD905e2eaeBe188fc92179b6350807D8bd91Db0D8#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/ren/StableSwapRen.vy
https://etherscan.io/address/0x93054188d876f558f4a66B2EF1d97d16eDf0895B#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV1.vy
https://etherscan.io/address/0x49849C98ae39Fff122806C06791Fa73784FB3675#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/reth/StableSwapRETH.vy
https://etherscan.io/address/0xF9440930043eb3997fc70e1339dBb11F341de7A8#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy
https://etherscan.io/address/0x53a901d48795C58f485cBB38df08FA96a24669D5#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/saave/StableSwapSAAVE.vy
https://etherscan.io/address/0xeb16ae0052ed37f479f7fe63849198df1765a733#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy
https://etherscan.io/address/0x02d341CcB60fAaf662bC0554d13778015d1b285C#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/sbtc/StableSwapSBTC.vy
https://etherscan.io/address/0x7fC77b5c7614E1533320Ea6DDc2Eb61fa00A9714#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV1.vy
https://etherscan.io/address/0x075b1bb99792c9E1041bA13afEf80C91a1e70fB3#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/seth/StableSwapSETH.vy
https://etherscan.io/address/0xc5424b857f758e906013f3555dad202e4bdb4567#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy
https://etherscan.io/address/0xA3D87FffcE63B53E0d54fAa1cc983B7eB0b74A9c#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/steth/StableSwapSTETH.vy
https://etherscan.io/address/0xDC24316b9AE028F1497c275EB9192a3Ea0f67022#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy
https://etherscan.io/address/0x06325440D014e39736583c165C2963BA99fAf14E#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/susd/DepositSUSD.vy
https://etherscan.io/address/0xfcba3e75865d2d561be8d220616520c171f12851#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/susd/StableSwapSUSD.vy
https://etherscan.io/address/0xA5407eAE9Ba41422680e2e00537571bcC53efBfD#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV1.vy
https://etherscan.io/address/0xC25a3A3b969415c80451098fa907EC722572917F#code
https://github.com/curvefi/curve-crypto-contract/blob/master/contracts/CurveCryptoSwap.vy
https://etherscan.io/address/0x80466c64868E1ab14a1Ddf27A676C3fcBE638Fe5#code
https://github.com/curvefi/curve-crypto-contract/blob/master/contracts/DepositZap.vy
https://etherscan.io/address/0x331aF2E331bd619DefAa5DAc6c038f53FCF9F785#code
https://github.com/curvefi/curve-crypto-contract/blob/master/contracts/CurveTokenV4.vy
https://etherscan.io/address/0xcA3d75aC011BF5aD07a98d02f18225F9bD9A6BDF#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/usdt/DepositUSDT.vy
https://etherscan.io/address/0xac795d2c97e60df6a99ff1c814727302fd747a80#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/usdt/StableSwapUSDT.vy
https://etherscan.io/address/0x52EA46506B9CC5Ef470C5bf89f17Dc28bB35D85C#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV1.vy
https://etherscan.io/address/0x9fC689CCaDa600B6DF723D9E47D84d76664a1F23#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/y/DepositY.vy
https://etherscan.io/address/0xbbc81d23ea2c3ec7e56d39296f0cbb648873a5d3#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/y/StableSwapY.vy
https://etherscan.io/address/0x45F783CCE6B7FF23B2ab2D70e416cdb7D6055f51#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV1.vy
https://etherscan.io/address/0xdF5e0e81Dff6FAF3A7e52BA697820c5e32D806A8#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/yv2/StableSwapYv2.vy
https://etherscan.io/address/0x8925D9d9B4569D737a48499DeF3f67BaA5a144b9#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy
https://etherscan.io/address/0x571FF5b7b346F706aa48d696a9a4a288e9Bb4091#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/bbtc/StableSwapBBTC.vy
https://etherscan.io/address/0x071c661B4DeefB59E2a3DdB20Db036821eeE8F4b#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/bbtc/DepositBBTC.vy
https://etherscan.io/address/0xC45b2EEe6e09cA176Ca3bB5f7eEe7C47bF93c756#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy
https://etherscan.io/address/0x410e3E86ef427e30B9235497143881f717d93c2A#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/dusd/DepositDUSD.vy
https://etherscan.io/address/0x61E10659fe3aa93d036d099405224E4Ac24996d0#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/dusd/StableSwapDUSD.vy
https://etherscan.io/address/0x8038C01A0390a8c547446a0b2c18fc9aEFEcc10c#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy
https://etherscan.io/address/0x3a664Ab939FD8482048609f652f9a0B0677337B9#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/gusd/StableSwapGUSD.vy
https://etherscan.io/address/0x4f062658EaAF2C1ccf8C8e36D6824CDf41167956
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/gusd/DepositGUSD.vy
https://etherscan.io/address/0x64448B78561690B70E17CBE8029a3e5c1bB7136e#code

Curve Documentation, Release 1.0.0

Table 2 – continued from previous page
Pool Source Address
GUSD CurveTokenV2.vy 0xD2967f45c4f384DEEa880F807Be904762a3DeA07
HUSD DepositHUSD.vy 0x09672362833d8f703D5395ef3252D4Bfa51c15ca
HUSD StableSwapHUSD.vy 0x3eF6A01A0f81D6046290f3e2A8c5b843e738E604
HUSD CurveTokenV2.vy 0x5B5CFE992AdAC0C9D48E05854B2d91C73a003858
LinkUSD DepositLinkUSD.vy 0x1de7f0866e2c4adAC7b457c58Cc25c8688CDa1f2
LinkUSD StableSwapLinkUSD.vy 0xE7a24EF0C5e95Ffb0f6684b813A78F2a3AD7D171
LinkUSD CurveTokenV2.vy 0x6D65b498cb23deAba52db31c93Da9BFFb340FB8F
MUSD DepositMUSD.vy 0x803A2B40c5a9BB2B86DD630B274Fa2A9202874C2
MUSD StableSwapMUSD.vy 0x8474DdbE98F5aA3179B3B3F5942D724aFcdec9f6
MUSD CurveTokenV2.vy 0x1AEf73d49Dedc4b1778d0706583995958Dc862e6
oBTC DepositOBTC.vy 0xd5BCf53e2C81e1991570f33Fa881c49EEa570C8D
oBTC StableSwapOBTC.vy 0xd81dA8D904b52208541Bade1bD6595D8a251F8dd
oBTC CurveTokenV3.vy 0x2fE94ea3d5d4a175184081439753DE15AeF9d614
pBTC DepositPBTC.vy 0x11F419AdAbbFF8d595E7d5b223eee3863Bb3902C
pBTC StableSwapPBTC.vy 0x7F55DDe206dbAD629C080068923b36fe9D6bDBeF
pBTC CurveTokenV2.vy 0xDE5331AC4B3630f94853Ff322B66407e0D6331E8
RSV DepositRSV.vy 0xBE175115BF33E12348ff77CcfEE4726866A0Fbd5
RSV StableSwapRSV.vy 0xC18cC39da8b11dA8c3541C598eE022258F9744da
RSV CurveTokenV2.vy 0xC2Ee6b0334C261ED60C72f6054450b61B8f18E35
tBTC DepositTBTC.vy 0xaa82ca713D94bBA7A89CEAB55314F9EfFEdDc78c
tBTC StableSwapTBTC.vy 0xC25099792E9349C7DD09759744ea681C7de2cb66
tBTC CurveTokenV2.vy 0x64eda51d3Ad40D56b9dFc5554E06F94e1Dd786Fd
USDK DepositUSDK.vy 0xF1f85a74AD6c64315F85af52d3d46bF715236ADc
USDK StableSwapUSDK.vy 0x3E01dD8a5E1fb3481F0F589056b428Fc308AF0Fb
USDK CurveTokenV2.vy 0x97E2768e8E73511cA874545DC5Ff8067eB19B787
USDN DepositUSDN.vy 0x094d12e5b541784701FD8d65F11fc0598FBC6332
USDN StableSwapUSDN.vy 0x0f9cb53Ebe405d49A0bbdBD291A65Ff571bC83e1
USDN CurveTokenV2.vy 0x4f3E8F405CF5aFC05D68142F3783bDfE13811522
USDP DepositUSDP.vy 0x3c8cAee4E09296800f8D29A68Fa3837e2dae4940
USDP StableSwapUSDP.vy 0x42d7025938bEc20B69cBae5A77421082407f053A
USDP CurveTokenV3.vy 0x7Eb40E450b9655f4B3cC4259BCC731c63ff55ae6
UST DepositUST.vy 0xB0a0716841F2Fc03fbA72A891B8Bb13584F52F2d
UST StableSwapUST.vy 0x890f4e345B1dAED0367A877a1612f86A1f86985f
UST CurveTokenV3.vy 0x94e131324b6054c0D789b190b2dAC504e4361b53

30.3 Liquidity Gauges

Liquidity Gauges are used to stake LP tokens and handle distribution of the CRV governance token and are part of the
Curve DAO.

Here is a list of all liquidity gauges currently in use:

Gauge Source Address
3pool LiquidityGauge.sol 0xbFcF63294aD7105dEa65aA58F8AE5BE2D9d0952A
AAVE LiquidityGaugeV2.vy 0xd662908ADA2Ea1916B3318327A97eB18aD588b5d
alUSD LiquidityGaugeV3.vy 0x9582C4ADACB3BCE56Fea3e590F05c3ca2fb9C477
ankrETH LiquidityGaugeV2.vy 0x6d10ed2cF043E6fcf51A0e7b4C2Af3Fa06695707
bBTC LiquidityGaugeV2.vy 0xdFc7AdFa664b08767b735dE28f9E84cd30492aeE

continues on next page

30.3. Liquidity Gauges 135

https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy
https://etherscan.io/address/0xD2967f45c4f384DEEa880F807Be904762a3DeA07#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/husd/DepositHUSD.vy
https://etherscan.io/address/0x09672362833d8f703D5395ef3252D4Bfa51c15ca#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/husd/StableSwapHUSD.vy
https://etherscan.io/address/0x3eF6A01A0f81D6046290f3e2A8c5b843e738E604#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy
https://etherscan.io/address/0x5B5CFE992AdAC0C9D48E05854B2d91C73a003858#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/linkusd/DepositLinkUSD.vy
https://etherscan.io/address/0x1de7f0866e2c4adAC7b457c58Cc25c8688CDa1f2#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/linkusd/StableSwapLinkUSD.vy
https://etherscan.io/address/0xE7a24EF0C5e95Ffb0f6684b813A78F2a3AD7D171#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy
https://etherscan.io/address/0x6D65b498cb23deAba52db31c93Da9BFFb340FB8F#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/musd/DepositMUSD.vy
https://etherscan.io/address/0x803A2B40c5a9BB2B86DD630B274Fa2A9202874C2#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/musd/StableSwapMUSD.vy
https://etherscan.io/address/0x8474DdbE98F5aA3179B3B3F5942D724aFcdec9f6#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy
https://etherscan.io/address/0x1AEf73d49Dedc4b1778d0706583995958Dc862e6#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/obtc/DepositOBTC.vy
https://etherscan.io/address/0xd5BCf53e2C81e1991570f33Fa881c49EEa570C8D#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/obtc/StableSwapOBTC.vy
https://etherscan.io/address/0xd81dA8D904b52208541Bade1bD6595D8a251F8dd#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy
https://etherscan.io/address/0x2fE94ea3d5d4a175184081439753DE15AeF9d614#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/pbtc/DepositPBTC.vy
https://etherscan.io/address/0x11F419AdAbbFF8d595E7d5b223eee3863Bb3902C#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/pbtc/StableSwapPBTC.vy
https://etherscan.io/address/0x7F55DDe206dbAD629C080068923b36fe9D6bDBeF#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy
https://etherscan.io/address/0xDE5331AC4B3630f94853Ff322B66407e0D6331E8#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/rsv/DepositRSV.vy
https://etherscan.io/address/0xBE175115BF33E12348ff77CcfEE4726866A0Fbd5#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/rsv/StableSwapRSV.vy
https://etherscan.io/address/0xC18cC39da8b11dA8c3541C598eE022258F9744da#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy
https://etherscan.io/address/0xC2Ee6b0334C261ED60C72f6054450b61B8f18E35#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/tbtc/DepositTBTC.vy
https://etherscan.io/address/0xaa82ca713D94bBA7A89CEAB55314F9EfFEdDc78c#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/tbtc/StableSwapTBTC.vy
https://etherscan.io/address/0xC25099792E9349C7DD09759744ea681C7de2cb66#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy
https://etherscan.io/address/0x64eda51d3Ad40D56b9dFc5554E06F94e1Dd786Fd#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/usdk/DepositUSDK.vy
https://etherscan.io/address/0xF1f85a74AD6c64315F85af52d3d46bF715236ADc#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/usdk/StableSwapUSDK.vy
https://etherscan.io/address/0x3E01dD8a5E1fb3481F0F589056b428Fc308AF0Fb#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy
https://etherscan.io/address/0x97E2768e8E73511cA874545DC5Ff8067eB19B787#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/usdn/DepositUSDN.vy
https://etherscan.io/address/0x094d12e5b541784701FD8d65F11fc0598FBC6332#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/usdn/StableSwapUSDN.vy
https://etherscan.io/address/0x0f9cb53Ebe405d49A0bbdBD291A65Ff571bC83e1#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy
https://etherscan.io/address/0x4f3E8F405CF5aFC05D68142F3783bDfE13811522#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/usdp/DepositUSDP.vy
https://etherscan.io/address/0x3c8cAee4E09296800f8D29A68Fa3837e2dae4940#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/usdp/StableSwapUSDP.vy
https://etherscan.io/address/0x42d7025938bEc20B69cBae5A77421082407f053A#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy
https://etherscan.io/address/0x7Eb40E450b9655f4B3cC4259BCC731c63ff55ae6#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/ust/DepositUST.vy
https://etherscan.io/address/0xB0a0716841F2Fc03fbA72A891B8Bb13584F52F2d#code
https://github.com/curvefi/curve-contract/blob/master/contracts/pools/ust/StableSwapUST.vy
https://etherscan.io/address/0x890f4e345B1dAED0367A877a1612f86A1f86985f#code
https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy
https://etherscan.io/address/0x94e131324b6054c0D789b190b2dAC504e4361b53#code
https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGauge.vy
https://etherscan.io/address/0xbFcF63294aD7105dEa65aA58F8AE5BE2D9d0952A#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy
https://etherscan.io/address/0xd662908ADA2Ea1916B3318327A97eB18aD588b5d#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV3.vy
https://etherscan.io/address/0x9582C4ADACB3BCE56Fea3e590F05c3ca2fb9C477#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy
https://etherscan.io/address/0x6d10ed2cF043E6fcf51A0e7b4C2Af3Fa06695707#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy
https://etherscan.io/address/0xdFc7AdFa664b08767b735dE28f9E84cd30492aeE#code

Curve Documentation, Release 1.0.0

Table 3 – continued from previous page
Gauge Source Address
BUSD LiquidityGauge.vy 0x69Fb7c45726cfE2baDeE8317005d3F94bE838840
Compound LiquidityGauge.sol 0x7ca5b0a2910B33e9759DC7dDB0413949071D7575
DUSD LiquidityGaugeReward.vy 0xAEA6c312f4b3E04D752946d329693F7293bC2e6D
EURS LiquidityGaugeV2.vy 0x90Bb609649E0451E5aD952683D64BD2d1f245840
FRAX LiquidityGaugeV2.vy 0x72e158d38dbd50a483501c24f792bdaaa3e7d55c
GUSD LiquidityGauge.vy 0xC5cfaDA84E902aD92DD40194f0883ad49639b023
hBTC LiquidityGauge.vy 0x4c18E409Dc8619bFb6a1cB56D114C3f592E0aE79
HUSD LiquidityGauge.vy 0x2db0E83599a91b508Ac268a6197b8B14F5e72840
MUSD LiquidityGaugeReward.vy 0x5f626c30EC1215f4EdCc9982265E8b1F411D1352
oBTC LiquidityGaugeV2.vy 0x11137B10C210b579405c21A07489e28F3c040AB1
PAX LiquidityGauge.vy 0x64E3C23bfc40722d3B649844055F1D51c1ac041d
IronBank LiquidityGaugeV2.vy 0xF5194c3325202F456c95c1Cf0cA36f8475C1949F
Link LiquidityGaugeV2.vy 0xFD4D8a17df4C27c1dD245d153ccf4499e806C87D
pBTC LiquidityGaugeV2.vy 0xd7d147c6Bb90A718c3De8C0568F9B560C79fa416
renBTC LiquidityGauge.vy 0xB1F2cdeC61db658F091671F5f199635aEF202CAC
RSV LiquidityGaugeReward.vy 0x4dC4A289a8E33600D8bD4cf5F6313E43a37adec7
sAAVE LiquidityGaugeV2.vy 0x462253b8F74B72304c145DB0e4Eebd326B22ca39
sBTC LiquidityGaugeReward.vy 0x705350c4BcD35c9441419DdD5d2f097d7a55410F
sETH LiquidityGaugeV2.vy 0x3C0FFFF15EA30C35d7A85B85c0782D6c94e1d238
stETH LiquidityGaugeV2.vy 0x182B723a58739a9c974cFDB385ceaDb237453c28
sUSDv2 LiquidityGaugeReward.vy 0xA90996896660DEcC6E997655E065b23788857849
rETH LiquidityGaugeV3.vy 0x824F13f1a2F29cFEEa81154b46C0fc820677A637
tBTC LiquidityGaugeReward.vy 0x6828bcF74279eE32f2723eC536c22c51Eed383C6
TriCrypto LiquidityGaugeV3.vy 0x6955a55416a06839309018A8B0cB72c4DDC11f15
USDK LiquidityGauge.vy 0xC2b1DF84112619D190193E48148000e3990Bf627
USDN LiquidityGauge.vy 0xF98450B5602fa59CC66e1379DFfB6FDDc724CfC4
USDP LiquidityGaugeV2.vy 0x055be5DDB7A925BfEF3417FC157f53CA77cA7222
USDT LiquidityGauge.vy 0xBC89cd85491d81C6AD2954E6d0362Ee29fCa8F53
UST LiquidityGaugeV2.vy 0x3B7020743Bc2A4ca9EaF9D0722d42E20d6935855
Y LiquidityGauge.vy 0xFA712EE4788C042e2B7BB55E6cb8ec569C4530c1
Yv2 LiquidityGaugeV2.vy 0x8101E6760130be2C8Ace79643AB73500571b7162

30.4 Curve DAO

Curve DAO consists of multiple smart contracts connected by Aragon. Interaction with Aragon occurs through a
modified implementation of the Aragon Voting App. Aragon’s standard one token, one vote method is replaced with
a weighting system based on locking tokens. Curve DAO has a token (CRV) which is used for both governance and
value accrual.

View the documentation for an in-depth overview of how the Curve DAO works.

Here is a list of contract deployments that are used in the Curve DAO:

Name Source Address
CRV Token ERC20CRV.sol 0xD533a949740bb3306d119CC777fa900bA034cd52
Fee Distributor FeeDistributor.vy 0xA464e6DCda8AC41e03616F95f4BC98a13b8922Dc
Gauge Controller GaugeController.vy 0x2F50D538606Fa9EDD2B11E2446BEb18C9D5846bB
Minter Minter.vy 0xd061D61a4d941c39E5453435B6345Dc261C2fcE0
Voting Escrow VotingEscrow.vy 0x5f3b5DfEb7B28CDbD7FAba78963EE202a494e2A2
Vesting Escrow VestingEscrow.vy 0x575ccd8e2d300e2377b43478339e364000318e2c

136 Chapter 30. Deployment Addresses

https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGauge.vy
https://etherscan.io/address/0x69Fb7c45726cfE2baDeE8317005d3F94bE838840#code
https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGauge.vy
https://etherscan.io/address/0x7ca5b0a2910B33e9759DC7dDB0413949071D7575#code
https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGaugeReward.vy
https://etherscan.io/address/0xAEA6c312f4b3E04D752946d329693F7293bC2e6D#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy
https://etherscan.io/address/0x90Bb609649E0451E5aD952683D64BD2d1f245840#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy
https://etherscan.io/address/0x72e158d38dbd50a483501c24f792bdaaa3e7d55c#code
https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGauge.vy
https://etherscan.io/address/0xC5cfaDA84E902aD92DD40194f0883ad49639b023#code
https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGauge.vy
https://etherscan.io/address/0x4c18E409Dc8619bFb6a1cB56D114C3f592E0aE79#code
https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGauge.vy
https://etherscan.io/address/0x2db0E83599a91b508Ac268a6197b8B14F5e72840#code
https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGaugeReward.vy
https://etherscan.io/address/0x5f626c30EC1215f4EdCc9982265E8b1F411D1352#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy
https://etherscan.io/address/0x11137B10C210b579405c21A07489e28F3c040AB1#code
https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGauge.vy
https://etherscan.io/address/0x64E3C23bfc40722d3B649844055F1D51c1ac041d#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy
https://etherscan.io/address/0xF5194c3325202F456c95c1Cf0cA36f8475C1949F#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy
https://etherscan.io/address/0xFD4D8a17df4C27c1dD245d153ccf4499e806C87D#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy
https://etherscan.io/address/0xd7d147c6Bb90A718c3De8C0568F9B560C79fa416#code
https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGauge.vy
https://etherscan.io/address/0xB1F2cdeC61db658F091671F5f199635aEF202CAC#code
https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGaugeReward.vy
https://etherscan.io/address/0x4dC4A289a8E33600D8bD4cf5F6313E43a37adec7#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy
https://etherscan.io/address/0x462253b8F74B72304c145DB0e4Eebd326B22ca39#code
https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGaugeReward.vy
https://etherscan.io/address/0x705350c4BcD35c9441419DdD5d2f097d7a55410F#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy
https://etherscan.io/address/0x3C0FFFF15EA30C35d7A85B85c0782D6c94e1d238#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy
https://etherscan.io/address/0x182B723a58739a9c974cFDB385ceaDb237453c28#code
https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGaugeReward.vy
https://etherscan.io/address/0xA90996896660DEcC6E997655E065b23788857849#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV3.vy
https://etherscan.io/address/0x824F13f1a2F29cFEEa81154b46C0fc820677A637#code
https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGaugeReward.vy
https://etherscan.io/address/0x6828bcF74279eE32f2723eC536c22c51Eed383C6#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV3.vy
https://etherscan.io/address/0x6955a55416a06839309018A8B0cB72c4DDC11f15#code
https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGauge.vy
https://etherscan.io/address/0xC2b1DF84112619D190193E48148000e3990Bf627#code
https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGauge.vy
https://etherscan.io/address/0xF98450B5602fa59CC66e1379DFfB6FDDc724CfC4#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy
https://etherscan.io/address/0x055be5DDB7A925BfEF3417FC157f53CA77cA7222#code
https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGauge.vy
https://etherscan.io/address/0xBC89cd85491d81C6AD2954E6d0362Ee29fCa8F53#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy
https://etherscan.io/address/0x3B7020743Bc2A4ca9EaF9D0722d42E20d6935855#code
https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGauge.vy
https://etherscan.io/address/0xFA712EE4788C042e2B7BB55E6cb8ec569C4530c1#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy
https://etherscan.io/address/0x8101E6760130be2C8Ace79643AB73500571b7162#code
https://github.com/aragon/aragonOS
https://github.com/curvefi/curve-aragon-voting
https://github.com/aragon/aragon-apps/tree/master/apps/voting
https://github.com/curvefi/curve-dao-contracts/blob/master/doc/readme.pdf
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/ERC20CRV.vy
https://etherscan.io/address/0xD533a949740bb3306d119CC777fa900bA034cd52#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/FeeDistributor.vy
https://etherscan.io/address/0xA464e6DCda8AC41e03616F95f4BC98a13b8922Dc#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/GaugeController.vy
https://etherscan.io/address/0x2F50D538606Fa9EDD2B11E2446BEb18C9D5846bB#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/Minter.vy
https://etherscan.io/address/0xd061D61a4d941c39E5453435B6345Dc261C2fcE0#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/VotingEscrow.vy
https://etherscan.io/address/0x5f3b5DfEb7B28CDbD7FAba78963EE202a494e2A2#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/VestingEscrow.vy
https://etherscan.io/address/0x575ccd8e2d300e2377b43478339e364000318e2c#code

Curve Documentation, Release 1.0.0

30.4.1 Ownership Proxies

The following contracts allow DAO ownership of the core Curve AMM contracts:

Name Source Address
Gauge Owner GaugeProxy.vy 0x519AFB566c05E00cfB9af73496D00217A630e4D5
Pool Owner PoolProxy.vy 0xeCb456EA5365865EbAb8a2661B0c503410e9B347
Crypto Pool Owner CryptoPoolProxy.vy 0x3687367CcAEBBE89f1bc8Eae7592b4Eed44Ac0Bd
Factory Pool Owner OwnerProxy.vy 0x8cf8af108b3b46ddc6ad596aebb917e053f0d72b

30.4.2 Aragon

Main documentation: Curve DAO: Governance

Voting App

Aragon Voting App deployments are the main entry points used to create new votes, vote, checking the status of a vote,
and execute a successful vote.

Vote Type Address
Ownership 0xE478de485ad2fe566d49342Cbd03E49ed7DB3356
Parameter 0xBCfF8B0b9419b9A88c44546519b1e909cF330399
Emergency 0x1115c9b3168563354137cDc60efb66552dd50678

Agent

Aragon Agent deployments correspond to the different owner accounts within the DAO. Contract calls made as a result
of a successful vote will execute from these addresses. When deploying new contracts, these addresses should be given
appropriate access to admin functionality.

Vote Type Address
Ownership 0x40907540d8a6c65c637785e8f8b742ae6b0b9968
Parameter 0x4eeb3ba4f221ca16ed4a0cc7254e2e32df948c5f
Emergency 0x00669DF67E4827FCc0E48A1838a8d5AB79281909

Tokens

The following token addresses are used for determining voter weights within Curve’s Aragon DAOs.

Vote Type Address
Ownership / Parameter 0x5f3b5DfEb7B28CDbD7FAba78963EE202a494e2A2
Emergency 0x4c0947B16FB1f755A2D32EC21A0c4181f711C500

30.4. Curve DAO 137

https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/GaugeProxy.vy
https://etherscan.io/address/0x519AFB566c05E00cfB9af73496D00217A630e4D5#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/PoolProxy.vy
https://etherscan.io/address/0xeCb456EA5365865EbAb8a2661B0c503410e9B347#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/CryptoPoolProxy.vy
https://etherscan.io/address/0x3687367ccaebbe89f1bc8eae7592b4eed44ac0bd
https://github.com/curvefi/curve-factory/blob/master/contracts/OwnerProxy.vy
https://etherscan.io/address/0x8cf8af108b3b46ddc6ad596aebb917e053f0d72b
https://wiki.aragon.org/archive/dev/apps/voting/
https://etherscan.io/address/0xe478de485ad2fe566d49342cbd03e49ed7db3356
https://etherscan.io/address/0xbcff8b0b9419b9a88c44546519b1e909cf330399
https://etherscan.io/address/0x1115c9b3168563354137cdc60efb66552dd50678
https://hack.aragon.org/docs/guides-use-agent
https://etherscan.io/address/0x40907540d8a6c65c637785e8f8b742ae6b0b9968
https://etherscan.io/address/0x4eeb3ba4f221ca16ed4a0cc7254e2e32df948c5f
https://etherscan.io/address/0x00669DF67E4827FCc0E48A1838a8d5AB79281909
https://etherscan.io/address/0x5f3b5DfEb7B28CDbD7FAba78963EE202a494e2A2
https://etherscan.io/address/0x4c0947B16FB1f755A2D32EC21A0c4181f711C500

Curve Documentation, Release 1.0.0

30.4.3 Fee Burners

Burners are a fundamental component of the fee payout mechanism in Curve. A burner converts collected pool fees to
an asset which can be converted to USDC. Ultimately, the exchanged for USDC is deposited to the 3Pool, as fees are
paid out in 3CRV to veCRV holders. Depending on which tokens a pool contains, a specific burner implementation is
used.

Here is a list of all burner contracts currently in use:

Gauge Source Address
ABurner ABurner.vy 0x12220a63a2013133d54558c9d03c35288eac9b34
CryptoLPBurner CryptoLPBurner.vy 0x0B5B9210d5015fD0c97FB19B32675b19703b0453
CBurner CBurner.vy 0xdd0e10857d952c73b2fa39ce86308299df8774b8
LPBurner LPBurner.vy 0xaa42C0CD9645A58dfeB699cCAeFBD30f19B1ff81
MetaBurner MetaBurner.vy 0xE4b65889469ad896e866331f0AB5652C1EcfB3E6
SynthBurner SynthBurner.vy 0x67a0213310202DBc2cbE788f4349B72fbA90f9Fa
USDNBurner USDNBurner.vy 0x06534b0BF7Ff378F162d4F348390BDA53b15fA35
UnderlyingBurner UnderlyingBurner.vy 0x786b374b5eef874279f4b7b4de16940e57301a58
UniswapBurner UniswapBurner.vy 0xf3b64840b39121b40d8685f1576b64c157ce2e24
YBurner YBurner.vy 0xd16ea3e5681234da84419512eb597362135cd8c9

30.5 Pool Registry

The pool registry serves as an on-chain information hub about the current state of Curve pools. For instance, on-chain
integrators can fetch the current address of a Curve pool and query information about it.

Here is a list of all components of the pool registry currently in use:

Name Source Address
Address Provider AddressProvider.vy 0x0000000022d53366457f9d5e68ec105046fc4383
Curve Calculator CurveCalc.vy 0xc1DB00a8E5Ef7bfa476395cdbcc98235477cDE4E
Pool Info PoolInfo.vy 0xe64608E223433E8a03a1DaaeFD8Cb638C14B552C
Registry Registry.vy 0x90E00ACe148ca3b23Ac1bC8C240C2a7Dd9c2d7f5

30.6 MetaPool Factory

The metapool factory allows for the permissionless deployment of Curve metapools. As discussed here, the metapool
factory has the following core components:

• The factory is the main contract used to deploy new metapools. It also acts a registry for finding the deployed
pools and querying information about them.

• Pools are deployed via a proxy contract. The implementation contract targetted by the proxy is determined
according to the base pool. This is the same technique used to create pools in Uniswap V1.

• Deposit contracts (“zaps”) are used for wrapping and unwrapping underlying assets when depositing into or
withdrawing from pools.

Name Source Address
Factory Factory.vy 0xB9fC157394Af804a3578134A6585C0dc9cc990d4
Migrator PoolMigrator.vy 0xd6930b7f661257DA36F93160149b031735237594

138 Chapter 30. Deployment Addresses

https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/burners/ABurner.vy
https://etherscan.io/address/0x12220a63a2013133d54558c9d03c35288eac9b34#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/burners/CryptoLPBurner.vy
https://etherscan.io/address/0x0B5B9210d5015fD0c97FB19B32675b19703b0453#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/burners/CBurner.vy
https://etherscan.io/address/0xdd0e10857d952c73b2fa39ce86308299df8774b8#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/burners/LPBurner.vy
https://etherscan.io/address/0xaa42C0CD9645A58dfeB699cCAeFBD30f19B1ff81#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/burners/MetaBurner.vy
https://etherscan.io/address/0xE4b65889469ad896e866331f0AB5652C1EcfB3E6#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/burners/SynthBurner.vy
https://etherscan.io/address/0x67a0213310202dbc2cbe788f4349b72fba90f9fa
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/burners/USDNBurner.vy
https://etherscan.io/address/0x06534b0BF7Ff378F162d4F348390BDA53b15fA35#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/burners/UnderlyingBurner.vy
https://etherscan.io/address/0x786b374b5eef874279f4b7b4de16940e57301a58#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/burners/UniswapBurner.vy
https://etherscan.io/address/0xf3b64840b39121b40d8685f1576b64c157ce2e24#code
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/burners/YBurner.vy
https://etherscan.io/address/0xd16ea3e5681234da84419512eb597362135cd8c9#code
https://github.com/curvefi/curve-pool-registry/blob/master/contracts/AddressProvider.vy
https://etherscan.io/address/0x0000000022d53366457f9d5e68ec105046fc4383#code
https://github.com/curvefi/curve-pool-registry/blob/master/contracts/CurveCalc.vy
https://etherscan.io/address/0xc1DB00a8E5Ef7bfa476395cdbcc98235477cDE4E#code
https://github.com/curvefi/curve-pool-registry/blob/master/contracts/PoolInfo.vy
https://etherscan.io/address/0xe64608E223433E8a03a1DaaeFD8Cb638C14B552C#code
https://github.com/curvefi/curve-pool-registry/blob/master/contracts/Registry.vy
https://etherscan.io/address/0x90E00ACe148ca3b23Ac1bC8C240C2a7Dd9c2d7f5#code
https://github.com/curvefi/curve-factory/blob/master/contracts/Factory.vy
https://etherscan.io/address/0xB9fC157394Af804a3578134A6585C0dc9cc990d4
https://github.com/curvefi/curve-factory/blob/master/contracts/PoolMigrator.vy
https://etherscan.io/address/0xd6930b7f661257DA36F93160149b031735237594

Curve Documentation, Release 1.0.0

30.6.1 Implementation Contracts

The implementation contracts used for factory metapools are deployed to the mainnet at the following addresses:

Name Source Address
3pool MetaImplementationUSD.vy 0x5F890841f657d90E081bAbdB532A05996Af79Fe6
sBTC MetaImplementationBTC.vy 0x2f956eee002b0debd468cf2e0490d1aec65e027f

30.6.2 Deposit Zaps

Deposit zaps for factory metapools are deployed to the mainnet at the following addresses:

Name Source Address
3pool Deposit Zap DepositZapUSD.vy 0xA79828DF1850E8a3A3064576f380D90aECDD3359
sBTC Deposit Zap DepositZapBTC.vy 0x7AbDBAf29929e7F8621B757D2a7c04d78d633834

30.6.3 Promoted Factory Pools

Factory metapools which have been promoted to the flagship Curve UI.

Pool Source Address
alUSD MetaImplementationUSD.vy 0x43b4FdFD4Ff969587185cDB6f0BD875c5Fc83f8c
FRAX MetaImplementationUSD.vy 0xd632f22692FaC7611d2AA1C0D552930D43CAEd3B

30.7 Other Chains

30.7.1 Arbitrum

Curve has several contracts deployed on Arbitrum. UI for these contracts is available at arbitrum.curve.fi.

30.7. Other Chains 139

https://github.com/curvefi/curve-factory/blob/master/contracts/MetaImplementationUSD.vy
https://etherscan.io/address/0x5F890841f657d90E081bAbdB532A05996Af79Fe6
https://github.com/curvefi/curve-factory/blob/master/contracts/MetaImplementationBTC.vy
https://etherscan.io/address/0x2f956eee002b0debd468cf2e0490d1aec65e027f
https://github.com/curvefi/curve-factory/blob/master/contracts/DepositZapUSD.vy
https://etherscan.io/address/0xa79828df1850e8a3a3064576f380d90aecdd3359
https://github.com/curvefi/curve-factory/blob/master/contracts/DepositZapBTC.vy
https://etherscan.io/address/0x7abdbaf29929e7f8621b757d2a7c04d78d633834
https://github.com/curvefi/curve-factory/blob/master/contracts/MetaImplementationUSD.vy
https://etherscan.io/address/0x43b4FdFD4Ff969587185cDB6f0BD875c5Fc83f8c#code
https://github.com/curvefi/curve-factory/blob/master/contracts/MetaImplementationUSD.vy
https://etherscan.io/address/0xd632f22692FaC7611d2AA1C0D552930D43CAEd3B#code
https://offchainlabs.com/
https://arbitrum.curve.fi

Curve Documentation, Release 1.0.0

Pools and Gauges

Name Source Address
2Pool StableSwap.vy 0x7f90122BF0700F9E7e1F688fe926940E8839F353
2Pool LP Token StableSwap.vy 0x7f90122BF0700F9E7e1F688fe926940E8839F353
2Pool Child Gauge ChildGauge.vy 0xCE5F24B7A95e9cBa7df4B54E911B4A3Dc8CDAf6f
2Pool Root Gauge RootGauge.vy 0xCE5F24B7A95e9cBa7df4B54E911B4A3Dc8CDAf6f
wBTC/renBTC Pool StableSwap.vy 0x3E01dD8a5E1fb3481F0F589056b428Fc308AF0Fb
wBTC/renBTC LP Token StableSwap.vy 0x3E01dD8a5E1fb3481F0F589056b428Fc308AF0Fb
wBTC/renBTC Child Gauge ChildGauge.vy 0xDB3fd1bfC67b5D4325cb31C04E0Cae52f1787FD6
wBTC/renBTC Root Gauge RootGauge.vy 0xDB3fd1bfC67b5D4325cb31C04E0Cae52f1787FD6
Tricrypto Pool CryptoSwap.vy 0x960ea3e3C7FB317332d990873d354E18d7645590
Tricrypto LP Token CurveTokenV5.vy 0x8e0B8c8BB9db49a46697F3a5Bb8A308e744821D2
Tricrypto Zap CryptoZap.vy 0xF97c707024ef0DD3E77a0824555a46B622bfB500
Tricrypto Child Gauge ChildGauge.vy 0x555766f3da968ecBefa690Ffd49A2Ac02f47aa5f
Tricrypto Root Gauge RootGauge.vy 0x555766f3da968ecBefa690Ffd49A2Ac02f47aa5f
EURs Pool CryptoSwap.vy 0xA827a652Ead76c6B0b3D19dba05452E06e25c27e
EURs LP Token CurveTokenV5.vy 0x3dFe1324A0ee9d86337d06aEB829dEb4528DB9CA
EURs Zap ZapTwoArbiEurs.vy 0x25e2e8d104BC1A70492e2BE32dA7c1f8367F9d2c
EURs Child Gauge ChildGauge.vy 0x6339eF8Df0C2d3d3E7eE697E241666a916B81587
EURs Root Gauge RootGauge.vy 0x6339eF8Df0C2d3d3E7eE697E241666a916B81587

Factories

Name Source Address
StableSwap Factory FactorySidechains.vy 0xb17b674D9c5CB2e441F8e196a2f048A81355d031
MetaUSD Zap MetaUSDZap.vy 0x7544Fe3d184b6B55D6B36c3FCA1157eE0Ba30287
MetaBTC Zap MetaBTCZap.vy 0x803A2B40c5a9BB2B86DD630B274Fa2A9202874C2
X-Chain Gauge Factory ChildGaugeFactory.vy 0xabC000d88f23Bb45525E447528DBF656A9D55bf5

30.7.2 Aurora

Curve has several contracts deployed on Aurora. UI for these contracts is available at aurora.curve.fi.

Pools and Gauges

Name Source Address
3Pool StableSwap.vy 0xbF7E49483881C76487b0989CD7d9A8239B20CA41
3Pool LP Token StableSwap.vy 0xbF7E49483881C76487b0989CD7d9A8239B20CA41
3Pool Rewards-only Gauge RewardsOnlyGauge.vy 0xC2b1DF84112619D190193E48148000e3990Bf627

140 Chapter 30. Deployment Addresses

https://arbiscan.io/address/0x7f90122BF0700F9E7e1F688fe926940E8839F353#code
https://arbiscan.io/address/0x7f90122BF0700F9E7e1F688fe926940E8839F353
https://arbiscan.io/address/0x7f90122BF0700F9E7e1F688fe926940E8839F353#code
https://arbiscan.io/address/0x7f90122BF0700F9E7e1F688fe926940E8839F353
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy
https://arbiscan.io/address/0xCE5F24B7A95e9cBa7df4B54E911B4A3Dc8CDAf6f
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy
https://etherscan.io/address/0xCE5F24B7A95e9cBa7df4B54E911B4A3Dc8CDAf6f
https://arbiscan.io/address/0x3E01dD8a5E1fb3481F0F589056b428Fc308AF0Fb#code
https://arbiscan.io/address/0x3E01dD8a5E1fb3481F0F589056b428Fc308AF0Fb
https://arbiscan.io/address/0x3E01dD8a5E1fb3481F0F589056b428Fc308AF0Fb#code
https://arbiscan.io/address/0x3E01dD8a5E1fb3481F0F589056b428Fc308AF0Fb
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy
https://arbiscan.io/address/0xDB3fd1bfC67b5D4325cb31C04E0Cae52f1787FD6
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy
https://etherscan.io/address/0xDB3fd1bfC67b5D4325cb31C04E0Cae52f1787FD6
https://github.com/curvefi/curve-crypto-contract/blob/master/deployment-logs/2021-09-13.%20Arbitrum/CryptoSwap.vy
https://arbiscan.io/address/0x960ea3e3C7FB317332d990873d354E18d7645590
https://github.com/curvefi/curve-crypto-contract/blob/master/contracts/CurveTokenV5.vy
https://arbiscan.io/address/0x8e0B8c8BB9db49a46697F3a5Bb8A308e744821D2
https://arbiscan.io/address/0xF97c707024ef0DD3E77a0824555a46B622bfB500#code
https://arbiscan.io/address/0xF97c707024ef0DD3E77a0824555a46B622bfB500
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy
https://arbiscan.io/address/0x555766f3da968ecBefa690Ffd49A2Ac02f47aa5f
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy
https://etherscan.io/address/0x555766f3da968ecBefa690Ffd49A2Ac02f47aa5f
https://github.com/curvefi/curve-crypto-contract/blob/master/deployment-logs/2021-10-30.%20EURS/CryptoSwap.vy
https://arbiscan.io/address/0xA827a652Ead76c6B0b3D19dba05452E06e25c27e
https://github.com/curvefi/curve-crypto-contract/blob/master/contracts/CurveTokenV5.vy
https://arbiscan.io/address/0x3dFe1324A0ee9d86337d06aEB829dEb4528DB9CA
https://github.com/curvefi/curve-crypto-contract/blob/master/deployment-logs/2021-10-30.%20EURS/ZapTwoArbiEurs.vy
https://arbiscan.io/address/0x25e2e8d104BC1A70492e2BE32dA7c1f8367F9d2c
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy
https://arbiscan.io/address/0x6339eF8Df0C2d3d3E7eE697E241666a916B81587
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy
https://etherscan.io/address/0x6339eF8Df0C2d3d3E7eE697E241666a916B81587
https://github.com/curvefi/curve-factory/blob/master/contracts/FactorySidechains.vy
https://arbiscan.io/address/0xb17b674D9c5CB2e441F8e196a2f048A81355d031
https://arbiscan.io/address/0x7544Fe3d184b6B55D6B36c3FCA1157eE0Ba30287#code
https://arbiscan.io/address/0x7544Fe3d184b6B55D6B36c3FCA1157eE0Ba30287
https://arbiscan.io/address/0x803A2B40c5a9BB2B86DD630B274Fa2A9202874C2#code
https://arbiscan.io/address/0x803A2B40c5a9BB2B86DD630B274Fa2A9202874C2
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/ChildGaugeFactory.vy
https://arbiscan.io/address/0xabC000d88f23Bb45525E447528DBF656A9D55bf5
https://aurora.dev/start/
https://aurora.curve.fi
https://aurorascan.dev/address/0xbF7E49483881C76487b0989CD7d9A8239B20CA41#code
https://aurorascan.dev/address/0xbF7E49483881C76487b0989CD7d9A8239B20CA41
https://aurorascan.dev/address/0xbF7E49483881C76487b0989CD7d9A8239B20CA41#code
https://aurorascan.dev/address/0xbF7E49483881C76487b0989CD7d9A8239B20CA41
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/RewardsOnlyGauge.vy
https://aurorascan.dev/address/0xc2b1df84112619d190193e48148000e3990bf627

Curve Documentation, Release 1.0.0

30.7.3 Avalanche

Curve has several contracts deployed on Avalanche. UI for these contracts is available at avax.curve.fi.

Pools and Gauges

Name Source Address
Aave Pool StableSwap.vy 0x7f90122BF0700F9E7e1F688fe926940E8839F353
Aave LP Token CurveToken.vy 0x1337BedC9D22ecbe766dF105c9623922A27963EC
Aave Child Gauge ChildGauge.vy 0x4620D46b4db7fB04a01A75fFed228Bc027C9A899
Aave Root Gauge RootGauge.vy 0x4620D46b4db7fB04a01A75fFed228Bc027C9A899
renBTC Pool StableSwap.vy 0xC2b1DF84112619D190193E48148000e3990Bf627
renBTC LP Token StableSwap.vy 0xC2b1DF84112619D190193E48148000e3990Bf627
renBTC Child Gauge ChildGauge.vy 0x00F7d467ef51E44f11f52a0c0Bef2E56C271b264
renBTC Root Gauge RootGauge.vy 0x00F7d467ef51E44f11f52a0c0Bef2E56C271b264
ATriCrypto Pool CryptoSwap.vy 0xB755B949C126C04e0348DD881a5cF55d424742B2
ATriCrypto LP Token CurveToken.vy 0x1daB6560494B04473A0BE3E7D83CF3Fdf3a51828
ATriCrypto Zap CryptoZap.vy 0x58e57cA18B7A47112b877E31929798Cd3D703b0f
ATriCrypto Child Gauge ChildGauge.vy 0x1879075f1c055564CB968905aC404A5A01a1699A
ATriCrypto Root Gauge RootGauge.vy 0x1879075f1c055564CB968905aC404A5A01a1699A

Factories

Name Source Address
StableSwap Factory FactorySidechains.vy 0xb17b674D9c5CB2e441F8e196a2f048A81355d031
MetaUSD Zap MetaUSDZap.vy 0x001E3BA199B4FF4B5B6e97aCD96daFC0E2e4156e
MetaBTC Zap MetaBTCZap.vy 0xEeB3DDBcc4174e0b3fd1C13aD462b95D11Ef42C3
X-Chain Gauge Factory ChildGaugeFactory.vy 0xabC000d88f23Bb45525E447528DBF656A9D55bf5

30.7.4 Fantom

Curve has several contracts deployed on Fantom. UI for these contracts is available at ftm.curve.fi.

30.7. Other Chains 141

https://www.avax.network/
https://avax.curve.fi
https://snowtrace.io/address/0x7f90122BF0700F9E7e1F688fe926940E8839F353#code
https://snowtrace.io/address/0x7f90122BF0700F9E7e1F688fe926940E8839F353
https://snowtrace.io/address/0x1337BedC9D22ecbe766dF105c9623922A27963EC#code
https://snowtrace.io/address/0x1337BedC9D22ecbe766dF105c9623922A27963EC
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy
https://snowtrace.io/address/0x4620D46b4db7fB04a01A75fFed228Bc027C9A899
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy
https://etherscan.io/address/0x4620D46b4db7fB04a01A75fFed228Bc027C9A899
https://snowtrace.io/address/0x16a7DA911A4DD1d83F3fF066fE28F3C792C50d90
https://snowtrace.io/address/0xC2b1DF84112619D190193E48148000e3990Bf627
https://snowtrace.io/address/0x16a7DA911A4DD1d83F3fF066fE28F3C792C50d90
https://snowtrace.io/address/0xC2b1DF84112619D190193E48148000e3990Bf627
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy
https://snowtrace.io/address/0x00F7d467ef51E44f11f52a0c0Bef2E56C271b264
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy
https://etherscan.io/address/0x00F7d467ef51E44f11f52a0c0Bef2E56C271b264
https://github.com/curvefi/curve-crypto-contract/blob/master/deployment-logs/2021-10-04.%20Avax/CryptoSwap.vy
https://snowtrace.io/address/0xB755B949C126C04e0348DD881a5cF55d424742B2
https://snowtrace.io/address/0x1daB6560494B04473A0BE3E7D83CF3Fdf3a51828#code
https://snowtrace.io/address/0x1daB6560494B04473A0BE3E7D83CF3Fdf3a51828
https://snowtrace.io/address/0x58e57cA18B7A47112b877E31929798Cd3D703b0f#code
https://snowtrace.io/address/0x58e57cA18B7A47112b877E31929798Cd3D703b0f
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy
https://snowtrace.io/address/0x1879075f1c055564CB968905aC404A5A01a1699A
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy
https://etherscan.io/address/0x1879075f1c055564CB968905aC404A5A01a1699A
https://github.com/curvefi/curve-factory/blob/master/contracts/FactorySidechains.vy
https://snowtrace.io/address/0xb17b674D9c5CB2e441F8e196a2f048A81355d031
https://snowtrace.io/address/0x001E3BA199B4FF4B5B6e97aCD96daFC0E2e4156e#code
https://snowtrace.io/address/0x001E3BA199B4FF4B5B6e97aCD96daFC0E2e4156e
https://snowtrace.io/address/0xEeB3DDBcc4174e0b3fd1C13aD462b95D11Ef42C3#code
https://snowtrace.io/address/0xEeB3DDBcc4174e0b3fd1C13aD462b95D11Ef42C3
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/ChildGaugeFactory.vy
https://snowtrace.io/address/0xabC000d88f23Bb45525E447528DBF656A9D55bf5
https://fantom.foundation/
https://ftm.curve.fi

Curve Documentation, Release 1.0.0

Pools and Gauges

Name Source Address
2Pool Pool StableSwap2Pool.vy 0x27E611FD27b276ACbd5Ffd632E5eAEBEC9761E40
2Pool LP Token StableSwap2Pool.vy 0x27E611FD27b276ACbd5Ffd632E5eAEBEC9761E40
2Pool Child Gauge ChildGauge.vy 0x15bB164F9827De760174d3d3dAD6816eF50dE13c
2Pool Root Gauge RootGauge.vy 0x15bB164F9827De760174d3d3dAD6816eF50dE13c
fUSDT Pool StableSwapFUSDT.vy 0x92D5ebF3593a92888C25C0AbEF126583d4b5312E
fUSDT LP Token StableSwap2Pool.vy 0x92D5ebF3593a92888C25C0AbEF126583d4b5312E
fUSDT Root Chain Gauge Root-

GaugeAnyswap.vy
0xfE1A3dD8b169fB5BF0D5dbFe813d956F39fF6310

fUSDT Child Chain Streamer ChildChain-
Streamer.vy

0xfE1A3dD8b169fB5BF0D5dbFe813d956F39fF6310

fUSDT Gauge RewardsOnly-
Gauge.vy

0x06e3C4da96fd076b97b7ca3Ae23527314b6140dF

renBTC Pool StableSwapREN.vy 0x3eF6A01A0f81D6046290f3e2A8c5b843e738E604
renBTC LP Token CurveTokenV3.vy 0x5B5CFE992AdAC0C9D48E05854B2d91C73a003858
renBTC Child Gauge ChildGauge.vy 0xbC38bD19227F91424eD4132F630f51C9A42Fa338
renBTC Root Gauge RootGauge.vy 0xbC38bD19227F91424eD4132F630f51C9A42Fa338
Geist Pool StableSwap.vy 0x0fa949783947Bf6c1b171DB13AEACBB488845B3f
Geist LP Token CurveToken.vy 0xD02a30d33153877BC20e5721ee53DeDEE0422B2F
Geist Child Gauge ChildGauge.vy 0xF7b9c402c4D6c2eDbA04a7a515b53D11B1E9b2cc
Geist Root Gauge RootGauge.vy 0xF7b9c402c4D6c2eDbA04a7a515b53D11B1E9b2cc
TriCrypto Pool CryptoSwap.vy 0x3a1659Ddcf2339Be3aeA159cA010979FB49155FF
TriCrypto LP Token CurveToken.vy 0x58e57cA18B7A47112b877E31929798Cd3D703b0f
TriCrypto Child Gauge ChildGauge.vy 0x319E268f0A4C85D404734ee7958857F5891506d7
TriCrypto Root Gauge RootGauge.vy 0x319E268f0A4C85D404734ee7958857F5891506d7
IronBank Pool StableSwap.vy 0x4FC8D635c3cB1d0aa123859e2B2587d0FF2707b1
IronBank LP Token CurveToken.vy 0xDf38ec60c0eC001142a33eAa039e49E9b84E64ED
IronBank Rewards-only
Gauge

RewardsOnly-
Gauge.vy

0xDee85272EAe1aB4afBc6433F4d819BaBC9c7045A

Factories

Name Source Address
StableSwap Factory FactorySidechains.vy 0x686d67265703d1f124c45e33d47d794c566889ba
MetaUSD Zap (2pool) MetaUSDZap.vy 0x78D51EB71a62c081550EfcC0a9F9Ea94B2Ef081c
MetaUSD Zap (geist) MetaUSDZap.vy 0x247aEB220E87f24c40C9F86b65d6bd5d3c987B55
MetaBTC Zap MetaBTCZap.vy 0x001E3BA199B4FF4B5B6e97aCD96daFC0E2e4156e
X-Chain Gauge Factory ChildGaugeFactory.vy 0xabC000d88f23Bb45525E447528DBF656A9D55bf5

142 Chapter 30. Deployment Addresses

https://github.com/curvefi/curve-contract-fantom/blob/master/contracts/pools/2pool/StableSwap2Pool.vy
https://ftmscan.com/address/0x27E611FD27b276ACbd5Ffd632E5eAEBEC9761E40
https://github.com/curvefi/curve-contract-fantom/blob/master/contracts/pools/2pool/StableSwap2Pool.vy
https://ftmscan.com/address/0x27E611FD27b276ACbd5Ffd632E5eAEBEC9761E40
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy
https://ftmscan.com/address/0x15bB164F9827De760174d3d3dAD6816eF50dE13c
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy
https://etherscan.io/address/0x15bB164F9827De760174d3d3dAD6816eF50dE13c
https://github.com/curvefi/curve-contract-fantom/blob/master/contracts/pools/fusdt/StableSwapFUSDT.vy
https://ftmscan.com/address/0x92D5ebF3593a92888C25C0AbEF126583d4b5312E
https://github.com/curvefi/curve-contract-fantom/blob/master/contracts/pools/2pool/StableSwap2Pool.vy
https://ftmscan.com/address/0x92D5ebF3593a92888C25C0AbEF126583d4b5312E
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/sidechain/RootGaugeAnyswap.vy
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/sidechain/RootGaugeAnyswap.vy
https://etherscan.io/address/0xfE1A3dD8b169fB5BF0D5dbFe813d956F39fF6310
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/streamers/ChildChainStreamer.vy
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/streamers/ChildChainStreamer.vy
https://ftmscan.com/address/0xfE1A3dD8b169fB5BF0D5dbFe813d956F39fF6310
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/RewardsOnlyGauge.vy
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/RewardsOnlyGauge.vy
https://ftmscan.com/address/0x06e3C4da96fd076b97b7ca3Ae23527314b6140dF
https://github.com/skellet0r/curve-contract-fantom/blob/master/contracts/pools/ren/StableSwapREN.vy
https://ftmscan.com/address/0x3eF6A01A0f81D6046290f3e2A8c5b843e738E604
https://github.com/curvefi/curve-contract-fantom/blob/master/contracts/CurveTokenV3.vy
https://ftmscan.com/address/0x5B5CFE992AdAC0C9D48E05854B2d91C73a003858
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy
https://ftmscan.com/address/0xbC38bD19227F91424eD4132F630f51C9A42Fa338
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy
https://etherscan.io/address/0xbC38bD19227F91424eD4132F630f51C9A42Fa338
https://ftmscan.com/address/0x0fa949783947Bf6c1b171DB13AEACBB488845B3f#code
https://ftmscan.com/address/0x0fa949783947Bf6c1b171DB13AEACBB488845B3f
https://ftmscan.com/address/0xD02a30d33153877BC20e5721ee53DeDEE0422B2F#code
https://ftmscan.com/address/0xD02a30d33153877BC20e5721ee53DeDEE0422B2F
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy
https://ftmscan.com/address/0xF7b9c402c4D6c2eDbA04a7a515b53D11B1E9b2cc
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy
https://etherscan.io/address/0xF7b9c402c4D6c2eDbA04a7a515b53D11B1E9b2cc
https://github.com/curvefi/curve-crypto-contract/blob/master/deployment-logs/2021-09-17.%20Fantom/CryptoSwap.vy
https://ftmscan.com/address/0x3a1659Ddcf2339Be3aeA159cA010979FB49155FF
https://ftmscan.com/address/0x58e57cA18B7A47112b877E31929798Cd3D703b0f#code
https://ftmscan.com/address/0x58e57cA18B7A47112b877E31929798Cd3D703b0f
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy
https://ftmscan.com/address/0x319E268f0A4C85D404734ee7958857F5891506d7
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy
https://etherscan.io/address/0x319E268f0A4C85D404734ee7958857F5891506d7
https://ftmscan.com/address/0x4FC8D635c3cB1d0aa123859e2B2587d0FF2707b1#code
https://ftmscan.com/address/0x4FC8D635c3cB1d0aa123859e2B2587d0FF2707b1
https://ftmscan.com/address/0xDf38ec60c0eC001142a33eAa039e49E9b84E64ED#code
https://ftmscan.com/address/0xDf38ec60c0eC001142a33eAa039e49E9b84E64ED
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/RewardsOnlyGauge.vy
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/RewardsOnlyGauge.vy
https://ftmscan.com/address/0xdee85272eae1ab4afbc6433f4d819babc9c7045a
https://github.com/curvefi/curve-factory/blob/master/contracts/FactorySidechains.vy
https://ftmscan.com/address/0x686d67265703d1f124c45e33d47d794c566889ba
https://ftmscan.com/address/0x78D51EB71a62c081550EfcC0a9F9Ea94B2Ef081c#code
https://ftmscan.com/address/0x78D51EB71a62c081550EfcC0a9F9Ea94B2Ef081c
https://ftmscan.com/address/0x247aEB220E87f24c40C9F86b65d6bd5d3c987B55#code
https://ftmscan.com/address/0x247aEB220E87f24c40C9F86b65d6bd5d3c987B55
https://ftmscan.com/address/0x001E3BA199B4FF4B5B6e97aCD96daFC0E2e4156e#code
https://ftmscan.com/address/0x001E3BA199B4FF4B5B6e97aCD96daFC0E2e4156e
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/ChildGaugeFactory.vy
https://ftmscan.com/address/0xabC000d88f23Bb45525E447528DBF656A9D55bf5

Curve Documentation, Release 1.0.0

30.7.5 Harmony

Curve has several contracts deployed on Harmony. UI for these contracts is available at harmony.curve.fi.

Pools and Gauges

Name Source Address
3Pool StableSwap.vy 0xC5cfaDA84E902aD92DD40194f0883ad49639b023
3Pool LP Token StableSwap.vy 0xC5cfaDA84E902aD92DD40194f0883ad49639b023
3Pool RewardsOnly Gauge RewardsOnlyGauge.vy 0xbF7E49483881C76487b0989CD7d9A8239B20CA41
TriCrypto CryptoSwap.vy 0x0e3Dc2BcbFEa84072A0c794B7653d3db364154e0
TriCrypto LP Token Token.json 0xC5cfaDA84E902aD92DD40194f0883ad49639b023
TriCrypto Zap ZapHarmony.vy 0x76147c0C989670D106b57763a24410A2a22e335E
TriCrypto Gauge RewardsOnlyGauge.vy 0xF98450B5602fa59CC66e1379DFfB6FDDc724CfC4

30.7.6 Moonbeam

Curve has several contracts deployed on Moonbeam. UI for these contracts is available at moonbeam.curve.fi.

Pools

Name Source Address
3Pool StableSwap.vy 0xace58a26b8Db90498eF0330fDC9C2655db0C45E2
3Pool LP Token StableSwap.vy 0xace58a26b8Db90498eF0330fDC9C2655db0C45E2

Factories

Name Source Address
StableSwap Factory FactorySidechains.vy 0x4244eB811D6e0Ef302326675207A95113dB4E1F8
X-Chain Gauge Factory ChildGaugeFactory.vy 0xabC000d88f23Bb45525E447528DBF656A9D55bf5

30.7.7 Optimism

Curve has several contracts deployed on Optimism. UI for these contracts is available at optimism.curve.fi.

Pools

Name Source Address
3pool StableSwap.vy 0x1337BedC9D22ecbe766dF105c9623922A27963ECA
3pool LP Token StableSwap.vy 0x1337BedC9D22ecbe766dF105c9623922A27963ECA
3Pool Rewards Only Gauge RewardsOnlyGauge.vy 0x7f90122BF0700F9E7e1F688fe926940E8839F353

30.7. Other Chains 143

https://www.harmony.one/
https://harmony.curve.fi
https://explorer.harmony.one/address/0xc5cfada84e902ad92dd40194f0883ad49639b023
https://explorer.harmony.one/address/0xc5cfada84e902ad92dd40194f0883ad49639b023
https://explorer.harmony.one/address/0xc5cfada84e902ad92dd40194f0883ad49639b023
https://explorer.harmony.one/address/0xc5cfada84e902ad92dd40194f0883ad49639b023
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/RewardsOnlyGauge.vy
https://explorer.harmony.one/address/0xbF7E49483881C76487b0989CD7d9A8239B20CA41
https://github.com/curvefi/curve-crypto-contract/blob/master/deployment-logs/2021-10-17.%20Hamony/CryptoSwap.vy
https://explorer.harmony.one/address/0xc5cfada84e902ad92dd40194f0883ad49639b023
https://github.com/curvefi/curve-crypto-contract/blob/master/deployment-logs/2021-10-17.%20Hamony/swap.json
https://explorer.harmony.one/address/0x99E8eD28B97c7F1878776eD94fFC77CABFB9B726
https://github.com/curvefi/curve-crypto-contract/blob/master/deployment-logs/2021-10-17.%20Hamony/ZapHarmony.vy
https://explorer.harmony.one/address/0x76147c0c989670d106b57763a24410a2a22e335e
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/RewardsOnlyGauge.vy
https://explorer.harmony.one/address/0xF98450B5602fa59CC66e1379DFfB6FDDc724CfC4
https://moonbeam.network/
https://harmony.curve.fi
https://moonscan.io/address/0xace58a26b8db90498ef0330fdc9c2655db0c45e2#code
https://moonscan.io/address/0xace58a26b8db90498ef0330fdc9c2655db0c45e2
https://moonscan.io/address/0xace58a26b8db90498ef0330fdc9c2655db0c45e2#code
https://moonscan.io/address/0xace58a26b8db90498ef0330fdc9c2655db0c45e2
https://github.com/curvefi/curve-factory/blob/master/contracts/FactorySidechains.vy
https://moonscan.io/address/0x4244eB811D6e0Ef302326675207A95113dB4E1F8
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/ChildGaugeFactory.vy
https://moonscan.io/address/0xabC000d88f23Bb45525E447528DBF656A9D55bf5
https://www.optimism.io/
https://optimism.curve.fi
https://optimistic.etherscan.io/address/0x1337BedC9D22ecbe766dF105c9623922A27963EC#code
https://optimistic.etherscan.io/address/0x1337BedC9D22ecbe766dF105c9623922A27963EC
https://optimistic.etherscan.io/address/0x1337BedC9D22ecbe766dF105c9623922A27963EC#code
https://optimistic.etherscan.io/address/0x1337BedC9D22ecbe766dF105c9623922A27963EC
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/RewardsOnlyGauge.vy
https://optimistic.etherscan.io/address/0x7f90122bf0700f9e7e1f688fe926940e8839f353#code

Curve Documentation, Release 1.0.0

Factories

Name Source Address
StableSwap Factory FactorySidechains.vy 0x2db0E83599a91b508Ac268a6197b8B14F5e72840
X-Chain Gauge Factory ChildGaugeFactory.vy 0xabC000d88f23Bb45525E447528DBF656A9D55bf5

30.7.8 Polygon

Curve has several contracts deployed on Polygon. UI for these contracts is available at polygon.curve.fi.

Pools and Gauges

Name Source Address
ATriCrypto Pool CurveCryptoSwap-

Matic.vy
0x751B1e21756bDbc307CBcC5085c042a0e9AaEf36

ATriCrypto Zap ZapAave.vy 0x3FCD5De6A9fC8A99995c406c77DDa3eD7E406f81
ATriCrypto LP Token CurveTokenV4.vy 0x8096ac61db23291252574D49f036f0f9ed8ab390
ATriCrypto Root Chain Gauge RootGaugePolygon.vy 0x060e386eCfBacf42Aa72171Af9EFe17b3993fC4F
ATriCrypto Child Chain
Streamer

ChildChainStreamer.vy 0x060e386eCfBacf42Aa72171Af9EFe17b3993fC4F

ATriCrypto Reward Claimer RewardClaimer.vy 0xe84AE0321f88349B5F1119464EEB242b7De51a69
ATriCrypto Gauge RewardsOnlyGauge.vy 0xb0a366b987d77b5eD5803cBd95C80bB6DEaB48C0
ATriCrypto3 Pool CryptoSwap.vy 0x92215849c439E1f8612b6646060B4E3E5ef822cC
ATriCrypto3 LP Token CurveTokenV5.vy 0xdAD97F7713Ae9437fa9249920eC8507e5FbB23d3
ATriCrypto3 Zap CryptoZap.vy 0x1d8b86e3D88cDb2d34688e87E72F388Cb541B7C8
ATriCrypto3 Child Gauge ChildGauge.vy 0xBb1B19495B8FE7C402427479B9aC14886cbbaaeE
ATriCrypto3 Root Gauge RootGauge.vy 0xBb1B19495B8FE7C402427479B9aC14886cbbaaeE
Aave Pool StableSwapAave.vy 0x445FE580eF8d70FF569aB36e80c647af338db351
Aave LP Token CurveTokenV3.vy 0xE7a24EF0C5e95Ffb0f6684b813A78F2a3AD7D171
Aave Child Gauge ChildGauge.vy 0x20759F567BB3EcDB55c817c9a1d13076aB215EdC
Aave Root Gauge RootGauge.vy 0x20759F567BB3EcDB55c817c9a1d13076aB215EdC
renBTC Pool StableSwapREN.vy 0xC2d95EEF97Ec6C17551d45e77B590dc1F9117C67
renBTC LP Token CurveTokenV3.vy 0xf8a57c1d3b9629b77b6726a042ca48990A84Fb49
renBTC Child Gauge ChildGauge.vy 0x8D9649e50A0d1da8E939f800fB926cdE8f18B47D
renBTC Root Gauge RootGauge.vy 0x8D9649e50A0d1da8E939f800fB926cdE8f18B47D
EURTUSD Pool CryptoSwap.vy 0xB446BF7b8D6D4276d0c75eC0e3ee8dD7Fe15783A
EURTUSD LP Token CurveToken.vy 0x600743B1d8A96438bD46836fD34977a00293f6Aa
EURTUSD Zap CryptoZap.vy 0x225FB4176f0E20CDb66b4a3DF70CA3063281E855
EURTUSD Child Gauge ChildGauge.vy 0x8b397084699Cc64E429F610F81Fac13bf061ef55
EURTUSD Root Gauge RootGauge.vy 0x8b397084699Cc64E429F610F81Fac13bf061ef55
EURs Pool CryptoSwap.vy 0x9b3d675FDbe6a0935E8B7d1941bc6f78253549B7
EURs LP Token Token.json 0x7BD9757FbAc089d60DaFF1Fa6bfE3BC99b0F5735
EURs Zap Zap.json 0x4DF7eF55E99a56851187822d96B4E17D98A47DeD

144 Chapter 30. Deployment Addresses

https://github.com/curvefi/curve-factory/blob/master/contracts/FactorySidechains.vy
https://optimistic.etherscan.io/address/0x2db0E83599a91b508Ac268a6197b8B14F5e72840
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/ChildGaugeFactory.vy
https://optimistic.etherscan.io/address/0xabC000d88f23Bb45525E447528DBF656A9D55bf5
https://polygon.technology/
https://polygon.curve.fi
https://github.com/curvefi/curve-crypto-contract/blob/master/contracts/matic/CurveCryptoSwapMatic.vy
https://github.com/curvefi/curve-crypto-contract/blob/master/contracts/matic/CurveCryptoSwapMatic.vy
https://polygonscan.com/address/0x751B1e21756bDbc307CBcC5085c042a0e9AaEf36
https://github.com/curvefi/curve-crypto-contract/blob/master/contracts/matic/ZapAave.vy
https://polygonscan.com/address/0x3FCD5De6A9fC8A99995c406c77DDa3eD7E406f81
https://github.com/curvefi/curve-crypto-contract/blob/master/contracts/CurveTokenV4.vy
https://polygonscan.com/address/0x8096ac61db23291252574D49f036f0f9ed8ab390
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/sidechain/RootGaugePolygon.vy
https://etherscan.io/address/0x060e386eCfBacf42Aa72171Af9EFe17b3993fC4F
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/streamers/ChildChainStreamer.vy
https://polygonscan.com/address/0x060e386eCfBacf42Aa72171Af9EFe17b3993fC4F
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/streamers/RewardClaimer.vy
https://polygonscan.com/address/0xe84AE0321f88349B5F1119464EEB242b7De51a69
https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/RewardsOnlyGauge.vy
https://polygonscan.com/address/0xb0a366b987d77b5eD5803cBd95C80bB6DEaB48C0
https://github.com/curvefi/curve-crypto-contract/blob/master/deployment-logs/2021-08-27.%20Polygon%20redeployment/CryptoSwap.vy
https://polygonscan.com/address/0x92215849c439E1f8612b6646060B4E3E5ef822cC
https://github.com/curvefi/curve-crypto-contract/blob/master/contracts/CurveTokenV5.vy
https://polygonscan.com/address/0xdAD97F7713Ae9437fa9249920eC8507e5FbB23d3
https://polygonscan.com/address/0x1d8b86e3D88cDb2d34688e87E72F388Cb541B7C8#code
https://polygonscan.com/address/0x1d8b86e3D88cDb2d34688e87E72F388Cb541B7C8
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy
https://polygonscan.com/address/0xBb1B19495B8FE7C402427479B9aC14886cbbaaeE
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy
https://etherscan.io/address/0xBb1B19495B8FE7C402427479B9aC14886cbbaaeE
https://github.com/curvefi/curve-contract-polygon/blob/master/contracts/pools/aave/StableSwapAave.vy
https://polygonscan.com/address/0x445FE580eF8d70FF569aB36e80c647af338db351
https://github.com/curvefi/curve-contract-polygon/blob/master/contracts/CurveTokenV3.vy
https://polygonscan.com/address/0xE7a24EF0C5e95Ffb0f6684b813A78F2a3AD7D171
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy
https://polygonscan.com/address/0x20759F567BB3EcDB55c817c9a1d13076aB215EdC
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy
https://etherscan.io/address/0x20759F567BB3EcDB55c817c9a1d13076aB215EdC
https://github.com/curvefi/curve-contract-polygon/blob/master/contracts/pools/ren/StableSwapREN.vy
https://polygonscan.com/address/0xC2d95EEF97Ec6C17551d45e77B590dc1F9117C67
https://github.com/curvefi/curve-contract-polygon/blob/master/contracts/CurveTokenV3.vy
https://polygonscan.com/address/0xf8a57c1d3b9629b77b6726a042ca48990A84Fb49
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy
https://polygonscan.com/address/0x8D9649e50A0d1da8E939f800fB926cdE8f18B47D
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy
https://etherscan.io/address/0x8D9649e50A0d1da8E939f800fB926cdE8f18B47D
https://github.com/curvefi/curve-crypto-contract/blob/master/deployment-logs/2021-10-30.%20EURT/CryptoSwap.vy
https://polygonscan.com/address/0xB446BF7b8D6D4276d0c75eC0e3ee8dD7Fe15783A
https://polygonscan.com/address/0x600743B1d8A96438bD46836fD34977a00293f6Aa#code
https://polygonscan.com/address/0x600743B1d8A96438bD46836fD34977a00293f6Aa
https://polygonscan.com/address/0x225FB4176f0E20CDb66b4a3DF70CA3063281E855#code
https://polygonscan.com/address/0x225FB4176f0E20CDb66b4a3DF70CA3063281E855
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy
https://polygonscan.com/address/0x8b397084699Cc64E429F610F81Fac13bf061ef55
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy
https://etherscan.io/address/0x8b397084699Cc64E429F610F81Fac13bf061ef55
https://github.com/curvefi/curve-crypto-contract/blob/master/deployment-logs/2022-03-09.%20EURS-polygon/CryptoSwap.vy
https://polygonscan.com/address/0x9b3d675FDbe6a0935E8B7d1941bc6f78253549B7
https://github.com/curvefi/curve-crypto-contract/blob/master/deployment-logs/2022-03-09.%20EURS-polygon/token.json
https://polygonscan.com/address/0x7BD9757FbAc089d60DaFF1Fa6bfE3BC99b0F5735
https://github.com/curvefi/curve-crypto-contract/blob/master/deployment-logs/2022-03-09.%20EURS-polygon/zap.json
https://polygonscan.com/address/0x4DF7eF55E99a56851187822d96B4E17D98A47DeD

Curve Documentation, Release 1.0.0

Rewards and Admin Fees

Name Source Address
WMATIC Distributor RewardStream.vy 0xBdFF0C27dd073C119ebcb1299a68A6A92aE607F0
ABurner ABurner.vy 0xA237034249290De2B07988Ac64b96f22c0E76fE0
Admin Fee Bridge (Polygon) ChildBurner.vy 0x4473243A61b5193670D1324872368d015081822f
Admin Fee Bridge (Ethereum) RootForwarder.vy 0x4473243A61b5193670D1324872368d015081822f

Factories

Name Source Address
StableSwap Factory FactorySidechains.vy 0x722272d36ef0da72ff51c5a65db7b870e2e8d4ee
MetaUSD Zap MetaUSDZap.vy 0x5ab5C56B9db92Ba45a0B46a207286cD83C15C939
MetaBTC Zap MetaBTCZap.vy 0xE2e6DC1708337A6e59f227921db08F21e3394723
X-Chain Gauge Factory ChildGaugeFactory.vy 0xabC000d88f23Bb45525E447528DBF656A9D55bf5

30.7.9 XDai

Curve has several contracts deployed on XDai. UI for these contracts is available at xdai.curve.fi.

Pools and Gauges

Name Source Address
x3Pool Pool StableSwap3Pool.vy 0x7f90122BF0700F9E7e1F688fe926940E8839F353
x3Pool LP Token StableSwap3Pool.vy 0x1337BedC9D22ecbe766dF105c9623922A27963EC
x3Pool Child Gauge ChildGauge.vy 0xB721Cc32160Ab0da2614CC6aB16eD822Aeebc101
x3Pool Root Gauge RootGauge.vy 0xB721Cc32160Ab0da2614CC6aB16eD822Aeebc101

Factories

Name Source Address
StableSwap Factory FactorySidechains.vy 0xD19Baeadc667Cf2015e395f2B08668Ef120f41F5
MetaUSD Zap MetaUSDZap.vy 0x87C067fAc25f123554a0E76596BF28cFa37fD5E9
X-Chain Gauge Factory ChildGaugeFactory.vy 0xabC000d88f23Bb45525E447528DBF656A9D55bf5

30.7. Other Chains 145

https://github.com/curvefi/curve-contract-polygon/blob/master/contracts/gauges/RewardStream.vy
https://polygonscan.com/address/0xBdFF0C27dd073C119ebcb1299a68A6A92aE607F0
https://github.com/curvefi/curve-contract-polygon/blob/master/contracts/burners/ABurner.vy
https://polygonscan.com/address/0xA237034249290De2B07988Ac64b96f22c0E76fE0
https://github.com/curvefi/curve-contract-polygon/blob/master/contracts/bridge/ChildBurner.vy
https://polygonscan.com/address/0x4473243A61b5193670D1324872368d015081822f
https://github.com/curvefi/curve-contract-polygon/blob/master/contracts/bridge/RootForwarder.vy
https://etherscan.io/address/0x4473243A61b5193670D1324872368d015081822f
https://github.com/curvefi/curve-factory/blob/master/contracts/FactorySidechains.vy
https://polygonscan.com/address/0x722272d36ef0da72ff51c5a65db7b870e2e8d4ee
https://polygonscan.com/address/0x5ab5C56B9db92Ba45a0B46a207286cD83C15C939#code
https://polygonscan.com/address/0x5ab5C56B9db92Ba45a0B46a207286cD83C15C939
https://polygonscan.com/address/0xE2e6DC1708337A6e59f227921db08F21e3394723#code
https://polygonscan.com/address/0xE2e6DC1708337A6e59f227921db08F21e3394723
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/ChildGaugeFactory.vy
https://polygonscan.com/address/0xabC000d88f23Bb45525E447528DBF656A9D55bf5
https://www.xdaichain.com//
https://xdai.curve.fi
https://github.com/curvefi/curve-contract-xdai/blob/master/contracts/pools/2pool/StableSwap3Pool.vy
https://blockscout.com/xdai/mainnet/address/0x7f90122BF0700F9E7e1F688fe926940E8839F353
https://github.com/curvefi/curve-contract-xdai/blob/master/contracts/pools/2pool/StableSwap3Pool.vy
https://blockscout.com/xdai/mainnet/address/0x6C09F6727113543Fd061a721da512B7eFCDD0267
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy
https://blockscout.com/xdai/mainnet/address/0xB721Cc32160Ab0da2614CC6aB16eD822Aeebc101
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy
https://etherscan.io/address/0xB721Cc32160Ab0da2614CC6aB16eD822Aeebc101
https://github.com/curvefi/curve-factory/blob/master/contracts/FactorySidechains.vy
https://blockscout.com/xdai/mainnet/address/0xD19Baeadc667Cf2015e395f2B08668Ef120f41F5
https://blockscout.com/xdai/mainnet/address/0x87C067fAc25f123554a0E76596BF28cFa37fD5E9#code
https://blockscout.com/xdai/mainnet/address/0x87C067fAc25f123554a0E76596BF28cFa37fD5E9
https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/ChildGaugeFactory.vy
https://blockscout.com/xdai/mainnet/address/0xabC000d88f23Bb45525E447528DBF656A9D55bf5

Curve Documentation, Release 1.0.0

146 Chapter 30. Deployment Addresses

CHAPTER

THIRTYONE

GLOSSARY OF TERMS

This glossary of terms contains definitions of commonly used terms within the Curve documentation.

This section is a work in progress - if a term is missing, feel free to open a pull request to add it.

Automated Market Maker (AMM)
A decentralized asset trading pool that allows participants to buy or sell cryptocurrencies.

Base Pool
The pool issuing the LP token that is used by a metapool.

Burning
The process of withdrawing admin fees from the excahange contracts and distributing them to veCRV holders.

ERC20
A technical standard for implementing tokens within Ethereum. Often used interchangeably with the term token.
The standard is viewable here.

LP Token
Short for Liquidity Provider token. An ER20 token which represents a deposit into a Curve exchange contract,
or other AMM.

Metapool
A Curve pool where one of the tradeable assets is the LP token for another pool (base pool). Metapools are used
to prevent liquidity fragmentation.

Pool
See automated market maker.

Synth
Short for “synthetic asset” - a derivative which tracks the price of another asset, offering exposure to price
movements without requiring the user to hold the actual asset.

Underlying Coin
An ERC20 token that has been deposited into a protocol and where the deposit is represented by another token.
The other token (the “wrapped coin”) may be used to claim back this original token.

veCRV
Short for “vote-escrowed CRV”. CRV that has been locked in the voting contract.

Wrapped Coin
An ERC20 token used to represent the deposit of another token within a protocol. The original token has been
“wrapped” in this new token. The originial token is referred to as the “underlying coin”.

147

https://github.com/curvefi/curve-docs
https://eips.ethereum.org/EIPS/eip-20

Curve Documentation, Release 1.0.0

148 Chapter 31. Glossary of Terms

INDEX

A
AddressProvider.get_address()

built-in function, 74
AddressProvider.get_id_info()

built-in function, 74
AddressProvider.get_registry()

built-in function, 74
AddressProvider.max_id()

built-in function, 74

B
built-in function

AddressProvider.get_address(), 74
AddressProvider.get_id_info(), 74
AddressProvider.get_registry(), 74
AddressProvider.max_id(), 74
CurveToken.allowance(), 18
CurveToken.approve(), 18
CurveToken.balanceOf(), 17
CurveToken.burn(), 19
CurveToken.burnFrom(), 19, 20
CurveToken.decimals(), 17
CurveToken.decreaseAllowance(), 20
CurveToken.increaseAllowance(), 20
CurveToken.mint(), 19, 20
CurveToken.minter(), 19
CurveToken.name(), 17
CurveToken.set_minter(), 19
CurveToken.set_name(), 19
CurveToken.symbol(), 17
CurveToken.totalSupply(), 18
CurveToken.transfer(), 18
CurveToken.transferFrom(), 18
DepositZap.add_liquidity(), 22, 24, 25, 108
DepositZap.base_coins(), 25
DepositZap.base_pool(), 25
DepositZap.calc_token_amount(), 26, 107
DepositZap.calc_withdraw_one_coin(), 23,

26, 107
DepositZap.coins(), 22, 23, 25
DepositZap.curve(), 22, 23
DepositZap.lp_token(), 23

DepositZap.pool(), 25
DepositZap.remove_liquidity(), 22, 24, 25,

108
DepositZap.remove_liquidity_imbalance(),

23, 24, 26, 109
DepositZap.remove_liquidity_one_coin(),

23–25, 108
DepositZap.token(), 22, 25
DepositZap.underlying_coins(), 22, 23
DepositZap.withdraw_donated_dust(), 23
Factory.deploy_metapool(), 93
Factory.find_pool_for_coins(), 95
Factory.get_admin_balances(), 97
Factory.get_balances(), 97
Factory.get_coin_indices(), 96
Factory.get_coins(), 95
Factory.get_decimals(), 96
Factory.get_n_coins(), 95
Factory.get_rates(), 97
Factory.get_underlying_balances(), 97
Factory.get_underlying_coins(), 96
Factory.get_underlying_decimals(), 96
Factory.migrate_to_new_pool(), 111
Factory.pool_count(), 95
Factory.pool_list(), 95
FeeDistributor.claim(), 61
FeeDistributor.claim_many(), 61
GaugeController.change_type_weight(), 50
GaugeController.gauge_relative_weight(),

50
GaugeController.gauge_types(), 49
GaugeController.get_gauge_weight(), 49
GaugeController.get_total_weight(), 49
GaugeController.get_type_weight(), 49
GaugeController.get_weights_sum_per_type(),

49
GaugeController.last_user_vote(), 49
GaugeController.vote_user_power(), 49
GaugeController.vote_user_slopes(), 49
LiquidityGauge.approved_to_deposit(), 43
LiquidityGauge.balanceOf(), 42
LiquidityGauge.claimable_tokens(), 42

149

Curve Documentation, Release 1.0.0

LiquidityGauge.integrate_fraction(), 42
LiquidityGauge.is_killed(), 44
LiquidityGauge.lp_token(), 42
LiquidityGauge.user_checkpoint(), 42
LiquidityGauge.working_balances(), 42
LiquidityGauge.working_supply(), 42
LiquidityGaugeReward.claimable_reward(),

44
LiquidityGaugeReward.claimed_rewards_for(),

44
LiquidityGaugeReward.is_claiming_rewards(),

44
LiquidityGaugeReward.reward_contract(),

44
LiquidityGaugeReward.rewarded_token(), 44
LiquidityGaugeV2.approve(), 45
LiquidityGaugeV2.claimable_reward(), 46
LiquidityGaugeV2.reward_contract(), 45
LiquidityGaugeV2.rewarded_tokens(), 45
LiquidityGaugeV2.transfer(), 45
LiquidityGaugeV2.transferFrom(), 45
LiquidityGaugeV3.claimable_reward(), 48
LiquidityGaugeV3.claimable_reward_write(),

48
LiquidityGaugeV3.claimed_reward(), 48
LiquidityGaugeV3.last_claim(), 48
LiquidityGaugeV3.rewards_receiver(), 48
LPBurner.set_swap_data(), 58
MetaPool.block_timestamp_last(), 105
MetaPool.get_dy(), 105
MetaPool.get_price_cumulative_last(), 105
MetaPool.get_twap_balances(), 105
Minter.allowed_to_mint_for(), 51
PoolInfo.get_pool_coins(), 85
PoolInfo.get_pool_info(), 86
PoolProxy.burners(), 66
Registry.coin_count(), 83
Registry.estimate_gas_used(), 82
Registry.find_pool_for_coins(), 78
Registry.gauge_controller(), 82
Registry.get_A(), 81
Registry.get_admin_balances(), 80
Registry.get_balances(), 80
Registry.get_coin(), 83
Registry.get_coin_indices(), 79
Registry.get_coin_swap_complement(), 83
Registry.get_coin_swap_count(), 83
Registry.get_coins(), 78
Registry.get_decimals(), 79
Registry.get_fees(), 81
Registry.get_gauges(), 82
Registry.get_lp_token(), 78
Registry.get_n_coins(), 78
Registry.get_parameters(), 81

Registry.get_pool_asset_type(), 82
Registry.get_pool_from_lp_token(), 77
Registry.get_pool_name(), 82
Registry.get_rates(), 80
Registry.get_underlying_balances(), 80
Registry.get_underlying_coins(), 78
Registry.get_underlying_decimals(), 79
Registry.get_virtual_price_from_lp_token(),

80
Registry.is_meta(), 82
Registry.last_updated(), 83
Registry.pool_count(), 77
Registry.pool_list(), 77
StableSwap.A(), 8, 99
StableSwap.A_precise(), 8
StableSwap.add_liquidity(), 9, 12, 102
StableSwap.admin_balances(), 15
StableSwap.admin_fee(), 8, 100
StableSwap.allowance(), 104
StableSwap.apply_new_fee(), 15
StableSwap.apply_transfer_ownership(), 14
StableSwap.approve(), 104
StableSwap.balanceOf(), 104
StableSwap.balances(), 8, 99
StableSwap.base_cache_update(), 13
StableSwap.base_coins(), 12
StableSwap.base_pool(), 13
StableSwap.base_virtual_price(), 13
StableSwap.calc_token_amount(), 9, 101
StableSwap.calc_withdraw_one_coin(), 10,

102
StableSwap.coins(), 8, 13, 99
StableSwap.commit_new_fee(), 15
StableSwap.commit_transfer_ownership(),

14
StableSwap.decimals(), 103
StableSwap.donate_admin_fees(), 16
StableSwap.exchange(), 9, 13, 101
StableSwap.exchange_underlying(), 11, 14,

101
StableSwap.fee(), 8, 100
StableSwap.get_dy(), 9, 100
StableSwap.get_dy_underlying(), 100
StableSwap.get_estimated_swap_amount(),

29
StableSwap.get_swap_from_synth_amount(),

29
StableSwap.get_swap_into_synth_amount(),

29
StableSwap.get_virtual_price(), 8, 100
StableSwap.kill_me(), 16
StableSwap.lp_token(), 8
StableSwap.name(), 103
StableSwap.owner(), 8

150 Index

Curve Documentation, Release 1.0.0

StableSwap.ramp_A(), 15
StableSwap.remove_liquidity(), 9, 102
StableSwap.remove_liquidity_imbalance(),

10, 102
StableSwap.remove_liquidity_one_coin(),

10, 103
StableSwap.revert_new_parameters(), 15
StableSwap.revert_transfer_ownership(),

14
StableSwap.settle(), 32
StableSwap.stop_ramp_A(), 15
StableSwap.swap_from_synth(), 31
StableSwap.swap_into_synth(), 30
StableSwap.swappable_synth(), 28
StableSwap.symbol(), 103
StableSwap.synth_pools(), 28
StableSwap.token_info(), 31
StableSwap.totalSupply(), 103
StableSwap.transfer(), 104
StableSwap.transferFrom(), 104
StableSwap.underlying_coins(), 11
StableSwap.unkill_me(), 16
StableSwap.withdraw(), 32
StableSwap.withdraw_admin_fees(), 15
Swaps.exchange(), 90
Swaps.exchange_with_best_rate(), 90
Swaps.get_best_rate(), 89
Swaps.get_exchange_amount(), 89
SynthBurner.add_synths(), 59
SynthBurner.set_swap_for(), 59
UnderlyingBurner.execute(), 60
VotingEscrow.balanceOf(), 35
VotingEscrow.balanceOfAt(), 35
VotingEscrow.create_lock(), 36
VotingEscrow.increase_amount(), 37
VotingEscrow.increase_unlock_time(), 37
VotingEscrow.locked(), 36
VotingEscrow.totalSupply(), 36
VotingEscrow.totalSupplyAt(), 36
VotingEscrow.withdraw(), 37

C
CurveToken.allowance()

built-in function, 18
CurveToken.approve()

built-in function, 18
CurveToken.balanceOf()

built-in function, 17
CurveToken.burn()

built-in function, 19
CurveToken.burnFrom()

built-in function, 19, 20
CurveToken.decimals()

built-in function, 17

CurveToken.decreaseAllowance()
built-in function, 20

CurveToken.increaseAllowance()
built-in function, 20

CurveToken.mint()
built-in function, 19, 20

CurveToken.minter()
built-in function, 19

CurveToken.name()
built-in function, 17

CurveToken.set_minter()
built-in function, 19

CurveToken.set_name()
built-in function, 19

CurveToken.symbol()
built-in function, 17

CurveToken.totalSupply()
built-in function, 18

CurveToken.transfer()
built-in function, 18

CurveToken.transferFrom()
built-in function, 18

D
DepositZap.add_liquidity()

built-in function, 22, 24, 25, 108
DepositZap.base_coins()

built-in function, 25
DepositZap.base_pool()

built-in function, 25
DepositZap.calc_token_amount()

built-in function, 26, 107
DepositZap.calc_withdraw_one_coin()

built-in function, 23, 26, 107
DepositZap.coins()

built-in function, 22, 23, 25
DepositZap.curve()

built-in function, 22, 23
DepositZap.lp_token()

built-in function, 23
DepositZap.pool()

built-in function, 25
DepositZap.remove_liquidity()

built-in function, 22, 24, 25, 108
DepositZap.remove_liquidity_imbalance()

built-in function, 23, 24, 26, 109
DepositZap.remove_liquidity_one_coin()

built-in function, 23–25, 108
DepositZap.token()

built-in function, 22, 25
DepositZap.underlying_coins()

built-in function, 22, 23
DepositZap.withdraw_donated_dust()

built-in function, 23

Index 151

Curve Documentation, Release 1.0.0

F
Factory.deploy_metapool()

built-in function, 93
Factory.find_pool_for_coins()

built-in function, 95
Factory.get_admin_balances()

built-in function, 97
Factory.get_balances()

built-in function, 97
Factory.get_coin_indices()

built-in function, 96
Factory.get_coins()

built-in function, 95
Factory.get_decimals()

built-in function, 96
Factory.get_n_coins()

built-in function, 95
Factory.get_rates()

built-in function, 97
Factory.get_underlying_balances()

built-in function, 97
Factory.get_underlying_coins()

built-in function, 96
Factory.get_underlying_decimals()

built-in function, 96
Factory.migrate_to_new_pool()

built-in function, 111
Factory.pool_count()

built-in function, 95
Factory.pool_list()

built-in function, 95
FeeDistributor.claim()

built-in function, 61
FeeDistributor.claim_many()

built-in function, 61

G
GaugeController.change_type_weight()

built-in function, 50
GaugeController.gauge_relative_weight()

built-in function, 50
GaugeController.gauge_types()

built-in function, 49
GaugeController.get_gauge_weight()

built-in function, 49
GaugeController.get_total_weight()

built-in function, 49
GaugeController.get_type_weight()

built-in function, 49
GaugeController.get_weights_sum_per_type()

built-in function, 49
GaugeController.last_user_vote()

built-in function, 49
GaugeController.vote_user_power()

built-in function, 49
GaugeController.vote_user_slopes()

built-in function, 49

L
LiquidityGauge.approved_to_deposit()

built-in function, 43
LiquidityGauge.balanceOf()

built-in function, 42
LiquidityGauge.claimable_tokens()

built-in function, 42
LiquidityGauge.integrate_fraction()

built-in function, 42
LiquidityGauge.is_killed()

built-in function, 44
LiquidityGauge.lp_token()

built-in function, 42
LiquidityGauge.user_checkpoint()

built-in function, 42
LiquidityGauge.working_balances()

built-in function, 42
LiquidityGauge.working_supply()

built-in function, 42
LiquidityGaugeReward.claimable_reward()

built-in function, 44
LiquidityGaugeReward.claimed_rewards_for()

built-in function, 44
LiquidityGaugeReward.is_claiming_rewards()

built-in function, 44
LiquidityGaugeReward.reward_contract()

built-in function, 44
LiquidityGaugeReward.rewarded_token()

built-in function, 44
LiquidityGaugeV2.approve()

built-in function, 45
LiquidityGaugeV2.claimable_reward()

built-in function, 46
LiquidityGaugeV2.reward_contract()

built-in function, 45
LiquidityGaugeV2.rewarded_tokens()

built-in function, 45
LiquidityGaugeV2.transfer()

built-in function, 45
LiquidityGaugeV2.transferFrom()

built-in function, 45
LiquidityGaugeV3.claimable_reward()

built-in function, 48
LiquidityGaugeV3.claimable_reward_write()

built-in function, 48
LiquidityGaugeV3.claimed_reward()

built-in function, 48
LiquidityGaugeV3.last_claim()

built-in function, 48
LiquidityGaugeV3.rewards_receiver()

152 Index

Curve Documentation, Release 1.0.0

built-in function, 48
LPBurner.set_swap_data()

built-in function, 58

M
MetaPool.block_timestamp_last()

built-in function, 105
MetaPool.get_dy()

built-in function, 105
MetaPool.get_price_cumulative_last()

built-in function, 105
MetaPool.get_twap_balances()

built-in function, 105
Minter.allowed_to_mint_for()

built-in function, 51

P
PoolInfo.get_pool_coins()

built-in function, 85
PoolInfo.get_pool_info()

built-in function, 86
PoolProxy.burners()

built-in function, 66

R
Registry.coin_count()

built-in function, 83
Registry.estimate_gas_used()

built-in function, 82
Registry.find_pool_for_coins()

built-in function, 78
Registry.gauge_controller()

built-in function, 82
Registry.get_A()

built-in function, 81
Registry.get_admin_balances()

built-in function, 80
Registry.get_balances()

built-in function, 80
Registry.get_coin()

built-in function, 83
Registry.get_coin_indices()

built-in function, 79
Registry.get_coin_swap_complement()

built-in function, 83
Registry.get_coin_swap_count()

built-in function, 83
Registry.get_coins()

built-in function, 78
Registry.get_decimals()

built-in function, 79
Registry.get_fees()

built-in function, 81
Registry.get_gauges()

built-in function, 82
Registry.get_lp_token()

built-in function, 78
Registry.get_n_coins()

built-in function, 78
Registry.get_parameters()

built-in function, 81
Registry.get_pool_asset_type()

built-in function, 82
Registry.get_pool_from_lp_token()

built-in function, 77
Registry.get_pool_name()

built-in function, 82
Registry.get_rates()

built-in function, 80
Registry.get_underlying_balances()

built-in function, 80
Registry.get_underlying_coins()

built-in function, 78
Registry.get_underlying_decimals()

built-in function, 79
Registry.get_virtual_price_from_lp_token()

built-in function, 80
Registry.is_meta()

built-in function, 82
Registry.last_updated()

built-in function, 83
Registry.pool_count()

built-in function, 77
Registry.pool_list()

built-in function, 77

S
StableSwap.A()

built-in function, 8, 99
StableSwap.A_precise()

built-in function, 8
StableSwap.add_liquidity()

built-in function, 9, 12, 102
StableSwap.admin_balances()

built-in function, 15
StableSwap.admin_fee()

built-in function, 8, 100
StableSwap.allowance()

built-in function, 104
StableSwap.apply_new_fee()

built-in function, 15
StableSwap.apply_transfer_ownership()

built-in function, 14
StableSwap.approve()

built-in function, 104
StableSwap.balanceOf()

built-in function, 104
StableSwap.balances()

Index 153

Curve Documentation, Release 1.0.0

built-in function, 8, 99
StableSwap.base_cache_update()

built-in function, 13
StableSwap.base_coins()

built-in function, 12
StableSwap.base_pool()

built-in function, 13
StableSwap.base_virtual_price()

built-in function, 13
StableSwap.calc_token_amount()

built-in function, 9, 101
StableSwap.calc_withdraw_one_coin()

built-in function, 10, 102
StableSwap.coins()

built-in function, 8, 13, 99
StableSwap.commit_new_fee()

built-in function, 15
StableSwap.commit_transfer_ownership()

built-in function, 14
StableSwap.decimals()

built-in function, 103
StableSwap.donate_admin_fees()

built-in function, 16
StableSwap.exchange()

built-in function, 9, 13, 101
StableSwap.exchange_underlying()

built-in function, 11, 14, 101
StableSwap.fee()

built-in function, 8, 100
StableSwap.get_dy()

built-in function, 9, 100
StableSwap.get_dy_underlying()

built-in function, 100
StableSwap.get_estimated_swap_amount()

built-in function, 29
StableSwap.get_swap_from_synth_amount()

built-in function, 29
StableSwap.get_swap_into_synth_amount()

built-in function, 29
StableSwap.get_virtual_price()

built-in function, 8, 100
StableSwap.kill_me()

built-in function, 16
StableSwap.lp_token()

built-in function, 8
StableSwap.name()

built-in function, 103
StableSwap.owner()

built-in function, 8
StableSwap.ramp_A()

built-in function, 15
StableSwap.remove_liquidity()

built-in function, 9, 102
StableSwap.remove_liquidity_imbalance()

built-in function, 10, 102
StableSwap.remove_liquidity_one_coin()

built-in function, 10, 103
StableSwap.revert_new_parameters()

built-in function, 15
StableSwap.revert_transfer_ownership()

built-in function, 14
StableSwap.settle()

built-in function, 32
StableSwap.stop_ramp_A()

built-in function, 15
StableSwap.swap_from_synth()

built-in function, 31
StableSwap.swap_into_synth()

built-in function, 30
StableSwap.swappable_synth()

built-in function, 28
StableSwap.symbol()

built-in function, 103
StableSwap.synth_pools()

built-in function, 28
StableSwap.token_info()

built-in function, 31
StableSwap.totalSupply()

built-in function, 103
StableSwap.transfer()

built-in function, 104
StableSwap.transferFrom()

built-in function, 104
StableSwap.underlying_coins()

built-in function, 11
StableSwap.unkill_me()

built-in function, 16
StableSwap.withdraw()

built-in function, 32
StableSwap.withdraw_admin_fees()

built-in function, 15
Swaps.exchange()

built-in function, 90
Swaps.exchange_with_best_rate()

built-in function, 90
Swaps.get_best_rate()

built-in function, 89
Swaps.get_exchange_amount()

built-in function, 89
SynthBurner.add_synths()

built-in function, 59
SynthBurner.set_swap_for()

built-in function, 59

U
UnderlyingBurner.execute()

built-in function, 60

154 Index

Curve Documentation, Release 1.0.0

V
VotingEscrow.balanceOf()

built-in function, 35
VotingEscrow.balanceOfAt()

built-in function, 35
VotingEscrow.create_lock()

built-in function, 36
VotingEscrow.increase_amount()

built-in function, 37
VotingEscrow.increase_unlock_time()

built-in function, 37
VotingEscrow.locked()

built-in function, 36
VotingEscrow.totalSupply()

built-in function, 36
VotingEscrow.totalSupplyAt()

built-in function, 36
VotingEscrow.withdraw()

built-in function, 37

Index 155

	Procotol Overview
	Curve StableSwap Exchange: Overview
	Curve StableSwap: Pools
	Plain Pools
	Getting Pool Info
	Making Exchanges
	Adding/Removing Liquidity

	Lending Pools
	Getting Pool Info
	Making Exchanges
	Adding/Removing Liquidity

	Metapools
	Getting Pool Information
	Making Exchanges

	Admin Pool Settings
	Pool Ownership
	Amplification Coefficient
	Trade Fees
	Kill a Pool

	Curve StableSwap Exchange: LP Tokens
	Curve Token V1
	Minter Methods

	Curve Token V2
	Curve Token V3

	Curve StableSwap Exchange: Deposit Contracts
	Lending Pool Deposits
	Deposit Zap API (OLD)
	Get Deposit Zap Information
	Adding/Removing Liquidity

	Deposit Zap API (NEW)
	Get Deposit Zap Information
	Adding/Removing Liquidity

	Metapool Deposits
	Get Deposit Zap Information
	Adding/Removing Liquidity

	Cross Asset Swaps
	How it Works
	Settler NFTs
	Front-running Considerations

	Exchange API
	Finding Swappable Assets
	Estimating Swap Amounts
	Initiating a Swap
	Getting Info about an Unsettled Swap
	Completing a Swap

	The Curve DAO
	Curve DAO: Vote-Escrowed CRV
	Implementation Details
	Querying Balances, Locks and Supply
	Working with Vote-Locks

	The Curve DAO: Liquidity Gauges and Minting CRV
	Implementation Details
	CRV Inflation
	Liquidity Gauges
	Boosting
	Gauge Weight Voting
	The Gauge Controller

	Gauge Types
	LiquidityGauge
	Querying Gauge Information
	Querying User Information
	Checkpoints
	Deposits and Withdrawals
	Killing the Gauge

	LiquidityGaugeReward
	Querying Reward Information
	Calculating Claimable Rewards
	Claiming Rewards

	LiquidityGaugeV2
	Querying Reward Information
	Approvals and Transfers
	Checking and Claiming Rewards
	Setting the Rewards Contract

	LiquidityGaugeV3
	Querying Reward Information
	Checking and Claiming Rewards

	GaugeController
	Querying Gauge and Type Weights
	Vote-Weighting
	Adding New Gauges and Types

	Minter
	Minting CRV

	The Curve DAO: Gauges for EVM Sidechains
	Implementation Details
	RootChainGauge
	ChildChainStreamer
	RewardsOnlyGauge
	RewardClaimer

	Curve DAO: Fee Collection and Distribution
	Withdrawing Admin Fees
	The Burn Process
	LPBurner
	SynthBurner
	ABurner, CBurner, YBurner
	MetaBurner
	USDNBurner
	UniswapBurner
	UnderlyingBurner

	Fee Distribution

	The Curve DAO: Governance and Voting
	Creating a Vote
	Inspecting Votes
	Voting
	Executing a Vote

	Curve DAO: Protocol Ownership
	Agents
	PoolProxy
	Configuring Fee Burners
	Withdraing and Burning Fees
	Killing Pools
	Pool Ownership
	Modifying Pool Parameters

	GaugeProxy

	Registry
	Registry: Address Provider
	How it Works
	View Functions
	Address IDs

	Registry
	Deployment Address
	View Functions
	Finding Pools
	Getting Info About a Pool
	Coins and Coin Info
	Balances and Rates
	Pool Parameters
	Gas Estimates
	Pool Metadata

	Gauges
	Getting Coins and Coin Swap Complements
	Registry Metadata

	Registry: Pool Info
	Deployment Address
	View Functions

	Registry: Exchanges
	Deployment Address
	Finding Pools and Swap Rates
	Swapping Tokens

	MetaPool Factory
	Organization

	Metapool Factory: Deployer and Registry
	Deploying a Pool
	Limitations
	Base Pools
	Choosing an Amplification Coefficient
	Trade fees

	Finding Pools
	Getting Pool Info
	Coins and Coin Info
	Balances and Rates

	Metapool Factory: Pools
	Implementation Contracts
	Getting Pool Info
	Making Exchanges
	Adding and Removing Liquidity
	Claiming Admin Fees
	LP Tokens
	Token Info
	Balances and Allowances
	Transfers and Approvals

	Metapool Factory: Oracles
	Time-Weighted Average Price oracles
	Security

	Metapool Factory: Deposit Contracts
	Deployment Addresses
	Calculating Expected Amounts
	Adding Liquidity
	Removing Liquidity

	Metapool Factory: Liquidity Migrator
	Migrating Liquidity between Pools

	Contributor Guide
	General
	Commit Messages
	Conventional Commits
	Best Practices

	Github Standard Fork and Pull Request Workflow
	Creating a Fork
	Keeping Your Fork Up to Date
	Doing Your Work
	Create a Branch

	Submitting a Pull Request
	Cleaning Up Your Work
	Submitting

	Accepting and Merging a Pull Request
	Checking Out and Testing Pull Requests
	Automatically Merging a Pull Request
	Manually Merging a Pull Request

	Creating A New Repository

	Testing
	Curve Contracts
	Organization
	Pool Type Tests
	Pool-specific Tests

	Running the tests
	Test Collection Filters
	Testing against a forked mainnet

	Fixtures
	Markers
	skip_pool(*pools)
	skip_pool_type(*pool_types)
	target_pool(*pools)
	skip_meta
	lending
	zap
	itercoins(*arg, underlying=False)

	Code Style
	Vyper Style Guide
	Project Organization
	Imports and Interfaces
	Events and Structs
	Constants and Storage Variables
	Functions

	Naming Conventions
	Leading Underscores
	Booleans

	Code Style
	Decorators
	Function Inputs
	Revert Strings

	Python Style Guide
	Linting and Pre-Commit Hooks
	Naming Conventions
	Leading Underscores
	Booleans
	Methods

	Code Style
	Imports
	Standard Library Imports
	Strings

	Deployment Addresses
	Base Pools
	MetaPools
	Liquidity Gauges
	Curve DAO
	Ownership Proxies
	Aragon
	Voting App
	Agent
	Tokens

	Fee Burners

	Pool Registry
	MetaPool Factory
	Implementation Contracts
	Deposit Zaps
	Promoted Factory Pools

	Other Chains
	Arbitrum
	Pools and Gauges
	Factories

	Aurora
	Pools and Gauges

	Avalanche
	Pools and Gauges
	Factories

	Fantom
	Pools and Gauges
	Factories

	Harmony
	Pools and Gauges

	Moonbeam
	Pools
	Factories

	Optimism
	Pools
	Factories

	Polygon
	Pools and Gauges
	Rewards and Admin Fees
	Factories

	XDai
	Pools and Gauges
	Factories

	Glossary of Terms
	Index

