

Curve

	Protocol Overview

StableSwap Exchange

	Overview

	Pools
	Plain Pools

	Lending Pools

	Metapools

	Admin Pool Settings

	LP Tokens
	Curve Token V1

	Curve Token V2

	Curve Token V3

	Deposit Contracts
	Lending Pool Deposits

	Metapool Deposits

	Cross-Asset Swaps
	How it Works

	Exchange API

Curve DAO

	Overview

	Vote-Escrowed CRV
	Implementation Details

	Querying Balances, Locks and Supply

	Working with Vote-Locks

	Liquidity Gauges and Minting CRV
	Implementation Details

	Gauge Types

	LiquidityGauge

	LiquidityGaugeReward

	LiquidityGaugeV2

	LiquidityGaugeV3

	GaugeController

	Minter

	Gauges for EVM Sidechains
	Implementation Details

	RootChainGauge

	ChildChainStreamer

	RewardsOnlyGauge

	RewardClaimer

	Fee Collection and Distribution
	Withdrawing Admin Fees

	The Burn Process

	Fee Distribution

	Governance and Voting
	Creating a Vote

	Inspecting Votes

	Voting

	Executing a Vote

	Ownership Proxies
	Agents

	PoolProxy

	GaugeProxy

Registry

	Overview

	The Address Provider
	How it Works

	View Functions

	Address IDs

	The Main Registry
	Deployment Address

	View Functions

	Pool Info: Aggregated Getters
	Deployment Address

	View Functions

	Exchanges
	Deployment Address

	Finding Pools and Swap Rates

	Swapping Tokens

Metapool Factory

	Overview
	Organization

	Deployer and Registry
	Deploying a Pool

	Finding Pools

	Getting Pool Info

	Pools
	Implementation Contracts

	Getting Pool Info

	Making Exchanges

	Adding and Removing Liquidity

	Claiming Admin Fees

	LP Tokens

	Oracles
	Time-Weighted Average Price oracles

	Security

	Deposit Contracts
	Deployment Addresses

	Calculating Expected Amounts

	Adding Liquidity

	Removing Liquidity

	Liquidity Migrator
	Migrating Liquidity between Pools

Contributor Guide

	Overview

	General
	Commit Messages

	Github Standard Fork and Pull Request Workflow

	Creating A New Repository

	Testing
	Curve Contracts

	Code Style
	Vyper Style Guide

	Python Style Guide
	Linting and Pre-Commit Hooks

Reference

	Deployment Addresses
	Base Pools

	MetaPools

	Liquidity Gauges

	Curve DAO

	Pool Registry

	MetaPool Factory

	Other Chains

	Glossary of Terms

 [image: Curve]

Curve is an exchange liquidity pool on Ethereum. Curve is designed for extremely efficient stablecoin trading and low risk, supplemental fee income for liquidity providers, without an opportunity cost.

This documentation outlines the technical implementation of the core Curve protocol and related smart contracts. It may be useful for contributors to the Curve codebase, third party integrators, or technically proficient users of the protocol.

Non-technical users may prefer the Resources [https://resources.curve.fi/] section of the main Curve website.

Note

All code starting with $ is meant to be run on your terminal. Code starting with >>> is meant to run inside the Brownie console.

Note

This project relies heavily upon brownie and the documentation assumes a basic familiarity with it. You may wish to view the Brownie documentation [https://eth-brownie.readthedocs.io/en/stable/] if you have not used it previously.

Procotol Overview

Curve can be broadly separated into the following categories:

	StableSwap: Exchange contracts and core functionality of the protocol

	The DAO: Protocol governance and value accrual

	The Factory: Permissionless deployment of Curve metapools

	The Registry: Standardized API and on-chain resources to aid 3rd party integrations

Curve StableSwap Exchange: Overview

Curve achieves extremely efficient stablecoin trades by implementing the StableSwap invariant, which has significantly lower slippage for stablecoin trades than many other prominent invariants (e.g., constant-product). Note that in this context stablecoins refers to tokens that are stable representations of one another. This includes, for example, USD-pegged stablecoins (like DAI and USDC), but also ETH and sETH (synthetic ETH) or different versions of wrapped BTC. For a detailed overview of the StableSwap invariant design, please read the official StableSwap whitepaper [https://curve.fi/files/stableswap-paper.pdf].

A Curve pool is essentially a smart contract that implements the StableSwap invariant and therefore contains the logic for exchanging stable tokens. However, while all Curve pools implement the StableSwap invariant, they may come in different pool flavors.

In its simplest form, a Curve pool is an implementation of the StableSwap invariant with 2 or more tokens, which can be referred to as a plain pool. Alternative and more complex pool flavors include pools with lending functionality, so-called lending pools, as well as metapools, which are pools that allow for the exchange of one or more tokens with the tokens of one or more underlying base pools.

Curve also integrates with Synthetix to offer cross-asset swaps.

All exchange functionality that Curve supports, as well as noteworthy implementation details, are explained in technical depth in this section.

Curve StableSwap: Pools

A Curve pool is a smart contract that implements the StableSwap invariant and thereby allows for the exchange of two or more tokens.

More broadly, Curve pools can be split into three categories:

	Plain pools: a pool where two or more stablecoins are paired against one another.

	Lending pools: a pool where two or more wrapped tokens (e.g., cDAI) are paired against one another, while the underlying is lent out on some other protocol.

	Metapools: a pool where a stablecoin is paired against the LP token from another pool.

Source code for Curve pools may be viewed on GitHub [https://github.com/curvefi/curve-contract/tree/master/contracts].

Warning

The API for plain, lending and metapools applies to all pools that are implemented based on pool templates [https://github.com/curvefi/curve-contract/tree/master/contracts/pool-templates]. When interacting with older Curve pools, there may be differences in terms of visibility, gas efficiency and/or variable naming. Furthermore, note that older contracts use vyper 0.1.x... and that the getters generated for public arrays changed between 0.1.x and 0.2.x to accept uint256 instead of int128 in order to handle the lookups.

Please do not assume for a Curve pool to implement the API outlined in this section but verify this before interacting with a pool contract.

For information on code style please refer to the official style guide.

Plain Pools

The simplest Curve pool is a plain pool, which is an implementation of the StableSwap invariant for two or more tokens. The key characteristic of a plain pool is that the pool contract holds all deposited assets at all times.

An example of a Curve plain pool is 3Pool [https://github.com/curvefi/curve-contract/tree/master/contracts/pools/3pool], which contains the tokens DAI, USDC and USDT.

Note

The API of plain pools is also implemented by lending and metapools.

The following Brownie console interaction examples are using EURS Pool [https://etherscan.io/address/0x0Ce6a5fF5217e38315f87032CF90686C96627CAA]. The template source code for plain pools may be viewed on GitHub [https://github.com/curvefi/curve-contract/blob/master/contracts/pool-templates/base/SwapTemplateBase.vy].

Note

Every pool has the constant private attribute N_COINS, which is the number of coins in the pool. This is referred to by several pool methods in the API.

Getting Pool Info

	
StableSwap.coins(i: uint256) → address: view

	Getter for the array of swappable coins within the pool.

>>> pool.coins(0)
'0xdB25f211AB05b1c97D595516F45794528a807ad8'

	
StableSwap.balances(i: uint256) → uint256: view

	Getter for the pool balances array.

>>> pool.balances(0)
2918187395

	
StableSwap.owner() → address: view

	Getter for the admin/owner of the pool.

>>> pool.owner()
'0xeCb456EA5365865EbAb8a2661B0c503410e9B347'

	
StableSwap.lp_token() → address: view

	Getter for the LP token of the pool.

>>> pool.lp_token()
'0x194eBd173F6cDacE046C53eACcE9B953F28411d1'

Note

In older Curve pools lp_token may not be public and thus not visible.

	
StableSwap.A() → uint256: view

	The amplification coefficient for the pool.

>>> pool.A()
100

	
StableSwap.A_precise() → uint256: view

	The amplification coefficient for the pool not scaled by A_PRECISION (100).

>>> pool.A_precise()
10000

	
StableSwap.get_virtual_price() → uint256: view

	The current price of the pool LP token relative to the underlying pool assets. Given as an integer with 1e18 precision.

>>> pool.get_virtual_price()
1001692838188850782

	
StableSwap.fee() → uint256: view

	The pool swap fee, as an integer with 1e10 precision.

>>> pool.fee()
4000000

	
StableSwap.admin_fee() → uint256: view

	The percentage of the swap fee that is taken as an admin fee, as an integer with with 1e10 precision.

Admin fee is set at 50% (5000000000) and is paid out to veCRV holders (see Fee Collection and Distribution).

>>> pool.admin_fee()
5000000000

Making Exchanges

	
StableSwap.get_dy(i: int128, j: int128, _dx: uint256) → uint256: view

	Get the amount of coin j one would receive for swapping _dx of coin i.

>>> pool.get_dy(0, 1, 100)
996307731416690125

Note: In the EURS Pool, the decimals for coins(0) and coins(1) are 2 and 18, respectively.

	
StableSwap.exchange(i: int128, j: int128, _dx: uint256, _min_dy: uint256) → uint256

	Perform an exchange between two coins.

	i: Index value for the coin to send

	j: Index value of the coin to receive

	_dx: Amount of i being exchanged

	_min_dy: Minimum amount of j to receive

Returns the actual amount of coin j received. Index values can be found via the coins public getter method.

>>> expected = pool.get_dy(0, 1, 10**2) * 0.99
>>> pool.exchange(0, 1, 10**2, expected, {"from": alice})

Adding/Removing Liquidity

	
StableSwap.calc_token_amount(_amounts: uint256[N_COINS], _is_deposit: bool [https://docs.python.org/3.8/library/functions.html#bool]) → uint256: view

	

Calculate addition or reduction in token supply from a deposit or withdrawal.

	_amounts: Amount of each coin being deposited

	_is_deposit: Set True for deposits, False for withdrawals

Returns the expected amount of LP tokens received. This calculation accounts for slippage, but not fees.

>>> pool.calc_token_amount([10**2, 10**18], True)
1996887509167925969

	
StableSwap.add_liquidity(_amounts: uint256[N_COINS], _min_mint_amount: uint256) → uint256

	Deposit coins into the pool.

	_amounts: List of amounts of coins to deposit

	_min_mint_amount: Minimum amount of LP tokens to mint from the deposit

Returns the amount of LP tokens received in exchange for the deposited tokens.

	
StableSwap.remove_liquidity(_amount: uint256, _min_amounts: uint256[N_COINS]) → uint256[N_COINS]

	Withdraw coins from the pool.

	_amount: Quantity of LP tokens to burn in the withdrawal

	_min_amounts: Minimum amounts of underlying coins to receive

Returns a list of the amounts for each coin that was withdrawn.

	
StableSwap.remove_liquidity_imbalance(_amounts: uint256[N_COINS], _max_burn_amount: uint256) → uint256

	Withdraw coins from the pool in an imbalanced amount.

	_amounts: List of amounts of underlying coins to withdraw

	_max_burn_amount: Maximum amount of LP token to burn in the withdrawal

Returns actual amount of the LP tokens burned in the withdrawal.

	
StableSwap.calc_withdraw_one_coin(_token_amount: uint256, i: int128) → uint256

	Calculate the amount received when withdrawing a single coin.

	_token_amount: Amount of LP tokens to burn in the withdrawal

	i: Index value of the coin to withdraw

	
StableSwap.remove_liquidity_one_coin(_token_amount: uint256, i: int128, _min_amount: uint256) → uint256

	Withdraw a single coin from the pool.

	_token_amount: Amount of LP tokens to burn in the withdrawal

	i: Index value of the coin to withdraw

	_min_amount: Minimum amount of coin to receive

Returns the amount of coin i received.

Lending Pools

Curve pools may contain lending functionality, whereby the underlying tokens are lent out on other protocols (e.g., Compound or Yearn). Hence, the main difference to a plain pool is that a lending pool does not hold the underlying token itself, but a wrapped representation of it.

Currently, Curve supports the following lending pools:

	aave: Aave pool [https://www.curve.fi/aave], with lending on Aave [https://www.aave.com/]

	busd: BUSD pool [https://www.curve.fi/busd], with lending on yearn.finance [https://yearn.finance/]

	compound: Compound pool [https://www.curve.fi/compound], with lending on Compound [https://compound.finance/]

	ib: Iron Bank pool [https://www.curve.fi/ib], with lending on Cream [https://v1.yearn.finance/lending]

	pax: PAX pool [https://www.curve.fi/pax], with lending on yearn.finance [https://yearn.finance/]

	usdt: USDT pool [https://www.curve.fi/usdt], with lending on Compound [https://compound.finance/]

	y: Y pool [https://www.curve.fi/y], with lending on yearn.finance [https://yearn.finance/]

An example of a Curve lending pool is Compound Pool [https://github.com/curvefi/curve-contract/tree/master/contracts/pools/compound], which contains the wrapped tokens cDAI and cUSDC, while the underlying tokens DAI and USDC are lent out on Compound. Liquidity providers of the Compound Pool therefore receive interest generated on Compound in addition to fees from token swaps in the pool.

Implementation of lending pools may differ with respect to how wrapped tokens accrue interest. There are two main types of wrapped tokens that are used by lending pools:

	cToken-style tokens: These are tokens, such as interest-bearing cTokens on Compound (e.g., cDAI) or on yTokens on Yearn, where interest accrues as the rate of the token increases.

	aToken-style tokens: These are tokens, such as aTokens on AAVE (e.g., aDAI), where interest accrues as the balance of the token increases.

The template source code for lending pools may be viewed on GitHub [https://github.com/curvefi/curve-contract/blob/master/contracts/pool-templates/y/SwapTemplateY.vy].

Note

Lending pools also implement the API from plain pools.

Getting Pool Info

	
StableSwap.underlying_coins(i: uint256) → address: view

	Getter for the array of underlying coins within the pool.

>>> lending_pool.coins(0)
'0x5d3a536E4D6DbD6114cc1Ead35777bAB948E3643'
>>> lending_pool.coins(1)
'0x39AA39c021dfbaE8faC545936693aC917d5E7563'

Making Exchanges

Like plain pools, lending pools have the exchange method. However, in the case of lending pools, calling exchange performs a swap between two wrapped tokens in the pool.

For example, calling exchange on the Compound Pool, would result in a swap between the wrapped tokens cDAI and cUSDC.

	
StableSwap.exchange_underlying(i: int128, j: int128, dx: uint256, min_dy: uint256) → uint256

	Perform an exchange between two underlying tokens. Index values can be found via the underlying_coins public getter method.

	i: Index value for the underlying coin to send

	j: Index value of the underlying coin to receive

	_dx: Amount of i being exchanged

	_min_dy: Minimum amount of j to receive

Returns the actual amount of coin j received.

Note

Older Curve lending pools may not implement the same signature for exchange_underlying. For instance, Compound pool [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/compound/StableSwapCompound.vy#L474] does not return anything for exchange_underlying and therefore costs more in terms of gas.

Adding/Removing Liquidity

The function signatures for adding and removing liquidity to a lending pool are mostly the same as for a plain pool. However, for lending pools, liquidity is added and removed in the wrapped token, not the underlying.

In order to be able to add and remove liquidity in the underlying token (e.g., remove DAI from Compound Pool instead of cDAI) there exists a Deposit<POOL>.vy contract (e.g., (DepositCompound.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/compound/DepositCompound.vy]).

Warning

Older Curve lending pools (e.g., Compound Pool) do not implement all plain pool methods for adding and removing liquidity. For instance, remove_liquidity_one_coin is not implemented by Compound Pool).

Some newer pools (e.g., IB [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/ib/StableSwapIB.vy]) have a modified signature for add_liquidity and allow the caller to specify whether the deposited liquidity is in the wrapped or underlying token.

	
StableSwap.add_liquidity(_amounts: uint256[N_COINS], _min_mint_amount: uint256, _use_underlying: bool [https://docs.python.org/3.8/library/functions.html#bool] = False) → uint256

	Deposit coins into the pool.

	_amounts: List of amounts of coins to deposit

	_min_mint_amount: Minimum amount of LP tokens to mint from the deposit

	_use_underlying If True, deposit underlying assets instead of wrapped assets.

Returns amount of LP tokens received in exchange for the deposited tokens.

Metapools

A metapool is a pool where a stablecoin is paired against the LP token from another pool, a so-called base pool.

For example, a liquidity provider may deposit DAI into 3Pool [https://etherscan.io/address/0xbebc44782c7db0a1a60cb6fe97d0b483032ff1c7#code] and in exchange receive the pool’s LP token 3CRV. The 3CRV LP token may then be deposited into the GUSD metapool [https://etherscan.io/address/0x4f062658EaAF2C1ccf8C8e36D6824CDf41167956], which contains the coins GUSD and 3CRV, in exchange for the metapool’s LP token gusd3CRV. The obtained LP token may then be staked in the metapool’s liquidity gauge for CRV rewards.

Metapools provide an opportunity for the base pool liquidity providers to earn additional trading fees by depositing their LP tokens into the metapool. Note that the CRV rewards received for staking LP tokens into the pool’s liquidity gauge may differ for the base pool’s liquidity gauge and the metapool’s liquidity gauge. For details on liquidity gauges and protocol rewards, please refer to Liquidity Gauges and Minting CRV.

Note

Metapools also implement the API from plain pools.

Getting Pool Information

	
StableSwap.base_coins(i: uint256) → address: view

	

Get the coins of the base pool.

>>> metapool.base_coins(0)
'0x6B175474E89094C44Da98b954EedeAC495271d0F'
>>> metapool.base_coins(1)
'0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48'
>>> metapool.base_coins(2)
'0xdAC17F958D2ee523a2206206994597C13D831ec7'

	
StableSwap.coins(i: uint256) → address: view

	Get the coins of the metapool.

>>> metapool.coins(0)
'0x056Fd409E1d7A124BD7017459dFEa2F387b6d5Cd'
>>> metapool.coins(1)
'0x6c3F90f043a72FA612cbac8115EE7e52BDe6E490'

In this console example, coins(0) is the metapool’s coin (GUSD) and coins(1) is the LP token of the base pool (3CRV).

	
StableSwap.base_pool() → address: view

	Get the address of the base pool.

>>> metapool.base_pool()
'0xbEbc44782C7dB0a1A60Cb6fe97d0b483032FF1C7'

	
StableSwap.base_virtual_price() → uint256: view

	Get the current price of the base pool LP token relative to the underlying base pool assets.

Note that the base pool’s virtual price is only fetched from the base pool if the cached price has expired. A fetched based pool virtual price is cached for 10 minutes (BASE_CACHE_EXPIRES: constant(int128) = 10 * 60).

>>> metapool.base_virtual_price()
1014750545929625438

	
StableSwap.base_cache_update() → uint256: view

	Get the timestamp at which the base pool virtual price was last cached.

>>> metapool.base_cache_updated()
1616583340

Making Exchanges

Similar to lending pools, on metapools exchanges can be made either between the coins the metapool actually holds (another pool’s LP token and some other coin) or between the metapool’s underlying coins. In the context of a metapool, underlying coins refers to the metapool’s coin and any of the base pool’s coins. The base pool’s LP token is not included as an underlying coin.

For example, the GUSD metapool would have the following:

	Coins: GUSD, 3CRV (3Pool LP)

	Underlying coins: GUSD, DAI, USDC, USDT

Note

While metapools contain public getters for coins and base_coins, there exists no getter for obtaining a list of all underlying coins.

	
StableSwap.exchange(i: int128, j: int128, _dx: uint256, _min_dy: uint256) → uint256

	Perform an exchange between two (non-underlying) coins in the metapool. Index values can be found via the coins public getter method.

	i: Index value for the coin to send

	j: Index valie of the coin to receive

	_dx: Amount of i being exchanged

	_min_dy: Minimum amount of j to receive

Returns the actual amount of coin j received.

	
StableSwap.exchange_underlying(i: int128, j: int128, _dx: uint256, _min_dy: uint256) → uint256

	Perform an exchange between two underlying coins. Index values are the coins followed by the base_coins, where the base pool LP token is not included as a value.

	i: Index value for the underlying coin to send

	j: Index valie of the underlying coin to recieve

	_dx: Amount of i being exchanged

	_min_dy: Minimum amount of underlying coin j to receive

Returns the actual amount of underlying coin j received.

The template source code for metapools may be viewed on GitHub [https://github.com/curvefi/curve-contract/blob/master/contracts/pool-templates/meta/SwapTemplateMeta.vy].

Admin Pool Settings

The following are methods that may only be called by the pool admin (owner).

Additionally, some admin methods require a two-phase transaction process, whereby changes are committed in a first transaction and after a forced delay applied via a second transaction. The minimum delay after which a committed action can be applied is given by the constant pool attribute admin_actions_delay, which is set to 3 days.

Pool Ownership

	
StableSwap.commit_transfer_ownership(_owner: address)

	Initiate an ownership transfer of pool to _owner.

Callable only by the ownership admin. The ownership can not be transferred before transfer_ownership_deadline, which is the timestamp of the current block delayed by admin_actions_delay.

	
StableSwap.apply_transfer_ownership()

	Transfers ownership of the pool from current owner to the owner previously set via commit_transfer_ownership.

Warning

Pool ownership can only be transferred once.

	
StableSwap.revert_transfer_ownership()

	Reverts any previously committed transfer of ownership. This method resets the transfer_ownership_deadline to 0.

Amplification Coefficient

The amplification co-efficient (“A”) determines a pool’s tolerance for imbalance between the assets within it. A higher value means that trades will incur slippage sooner as the assets within the pool become imbalanced.

Note

Within the pools, A is in fact implemented as 1 / A and therefore a higher value implies that the pool will be more tolerant to slippage when imbalanced.

The appropriate value for A is dependent upon the type of coin being used within the pool.

It is possible to modify the amplification coefficient for a pool after it has been deployed. However, it requires a vote within the Curve DAO and must reach a 15% quorum.

	
StableSwap.ramp_A(_future_A: uint256, _future_time: uint256)

	Ramp A up or down by setting a new A to take effect at a future point in time.

	_future_A: New future value of A

	_future_time: Timestamp at which new A should take effect

	
StableSwap.stop_ramp_A()

	Stop ramping A up or down and sets A to current A.

Trade Fees

Curve pools charge fees on token swaps, where the fee may differ between pools. An admin fee is charged on the pool fee. For an overview of how fees are distributed, please refer to Fee Collection and Distribution.

	
StableSwap.commit_new_fee(_new_fee: uint256, _new_admin_fee: uint256)

	Commit new pool and admin fees for the pool. These fees do not take immediate effect.

	_new_fee: New pool fee

	_new_admin_fee: New admin fee (expressed as a percentage of the pool fee)

Note

Both the pool fee and the admin_fee are capped by the constants MAX_FEE and MAX_ADMIN_FEE, respectively. By default MAX_FEE is set at 50% and MAX_ADMIN_FEE at 100% (which is charged on the MAX_FEE amount).

	
StableSwap.apply_new_fee()

	Apply the previously committed new pool and admin fees for the pool.

Note

Unlike ownership transfers, pool and admin fees may be set more than once.

	
StableSwap.revert_new_parameters()

	Resets any previously committed new fees.

	
StableSwap.admin_balances(i: uint256) → uint256

	Get the admin balance for a single coin in the pool.

	i: Index of the coin to get admin balance for

Returns the admin balance for coin i.

	
StableSwap.withdraw_admin_fees()

	Withdraws and transfers admin fees of the pool to the pool owner.

	
StableSwap.donate_admin_fees()

	Donate all admin fees to the pool’s liquidity providers.

Note

Older Curve pools do not implement this method.

Kill a Pool

	
StableSwap.kill_me()

	Pause a pool by setting the is_killed boolean flag to True.

This disables the following pool functionality:
* add_liquidity
* exchange
* remove_liquidity_imbalance
* remove_liquidity_one_coin

Hence, when paused, it is only possible for existing LPs to remove liquidity via remove_liquidity.

Note

Pools can only be killed within the first 30 days after deployment.

	
StableSwap.unkill_me()

	Unpause a pool that was previously paused, re-enabling exchanges.

Curve StableSwap Exchange: LP Tokens

In exchange for depositing coins into a Curve pool (see Curve Pools), liquidity providers receive pool LP tokens. A Curve pool LP token is an ERC20 contract specific to the Curve pool. Hence, LP tokens are transferrable. Holders of pool LP tokens may stake the token into a pool’s liquidity gauge in order to receive CRV token rewards. Alternatively, if the LP token is supported by a metapool, the token may be deposited into the respective metapool in exchange for the metapool’s LP token (see here).

The following versions of Curve pool LP tokens exist:

	CurveTokenV1 [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV1.vy]: LP token targetting Vyper ^0.1.0-beta.16 [https://vyper.readthedocs.io/en/stable/release-notes.html#v0-1-0-beta-16]

	CurveTokenV2 [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy]: LP token targetting Vyper ^0.2.0 [https://vyper.readthedocs.io/en/stable/release-notes.html#v0-2-1]

	CurveTokenV3 [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy]: LP token targetting Vyper ^0.2.0 [https://vyper.readthedocs.io/en/stable/release-notes.html#v0-2-1] with gas optimizations

The version of each pool’s LP token can be found in the Deployment Addresses.

Note

For older Curve pools the token attribute is not always public and a getter has not been explicitly implemented.

Curve Token V1

The implementation for a Curve Token V1 may be viewed on GitHub [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV1.vy].

	
CurveToken.name() → string[64]: view

	Get the name of the token.

>>> lp_token.name()
'Curve.fi yDAI/yUSDC/yUSDT/yBUSD'

	
CurveToken.symbol() → string[32]: view

	Get the token symbol.

>>> lp_token.symbol()
'yDAI+yUSDC+yUSDT+yBUSD'

	
CurveToken.decimals() → uint256: view

	Get the number of decimals for the token.

>>> lp_token.decimals()
18

	
CurveToken.balanceOf(account: address) → uint256: view

	Get the token balance for an account.

	account: Address to get the token balance for

>>> lp_token.balanceOf("0x69fb7c45726cfe2badee8317005d3f94be838840")
72372801850459006740117197

	
CurveToken.totalSupply() → uint256: view

	Get the total token supply.

>>> lp_token.totalSupply()
73112516629065063732935484

	
CurveToken.allowance(_owner: address, _spender: address) → uint256: view

	Get the allowance of an account to spend on behalf of some other account.

	_owner: Account that is paying when _spender spends the allowance

	_spender: Account that can spend up to the allowance

Returns the allowance of _spender for _owner.

	
CurveToken.transfer(_to: address, _value: uint256) → bool [https://docs.python.org/3.8/library/functions.html#bool]

	Transfer tokens to a specified address.

	_to: Receiver of the tokens

	_value: Amount of tokens to transfer

Returns True if the transfer succeeded.

	
CurveToken.transferFrom(_from: address, _to: address, _value: uint256) → bool [https://docs.python.org/3.8/library/functions.html#bool]

	Transfer tokens from one address to another. Note that while this function emits a Transfer event, this is not required as per the specification, and other compliant implementations may not emit the event.

	_from: Address which you want to send tokens from

	_to: Address which you want to transfer to

	_value: Amount of tokens to be transferred

Returns True if transfer succeeded.

	
CurveToken.approve(_spender: address, _value: uint256) → bool [https://docs.python.org/3.8/library/functions.html#bool]

	Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.

Beware that changing an allowance with this method brings the risk that someone may use both the old and the new allowance by unfortunate transaction ordering. One possible solution to mitigate this race condition is to first reduce the spender’s allowance to 0 and set the desired value afterwards (see this GitHub issue [https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729]).

	_spender: Address which will spend the funds.

	_value: Amount of tokens to be spent.

Returns True if approval succeeded.

Warning

For Curve LP Tokens V1 and V2, non-zero to non-zero approvals are prohibited. Instead, after every non-zero approval, the allowance for the spender must be reset to 0.

Minter Methods

The following methods are only callable by the minter (private attribute).

Note

For Curve Token V1, the minter attribute is not public.

	
CurveToken.mint(_to: address, _value: uint256)

	Mint an amount of the token and assign it to an account. This encapsulates the modification of balances such that the proper events are emitted.

	_to: Address that will receive the created tokens

	_value: Amount that will be created

	
CurveToken.burn(_value: uint256)

	Burn an amount of the token of msg.sender.

	_value: Token amount that will be burned

	
CurveToken.burnFrom(_to: address, _value: uint256)

	Burn an amount of the token from a given account.

	_to: Account whose tokens will be burned

	_value: Amount that will be burned

	
CurveToken.set_minter(_minter: address)

	Set a new minter for the token.

	_minter: Address of the new minter

Curve Token V2

The implementation for a Curve Token V2 may be viewed on GitHub [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy].

Note

Compared to Curve Token v1, the following changes have been made to the API:

	minter attribute is public and therefore a minter getter has been generated

	name and symbol attributes can be set via set_name

	mint method returns bool

	burnFrom method returns bool

	burn method has been removed

Warning

For Curve LP Tokens V1 and V2, non-zero to non-zero approvals are prohibited. Instead, after every non-zero approval, the allowance for the spender must be reset to 0.

	
CurveToken.minter() → address: view

	Getter for the address of the minter of the token.

	
CurveToken.set_name(_name: String[64], _symbol: String[32])

	Set the name and symbol of the token.

	_name: New name of token

	_symbol: New symbol of token

This method can only be called by minter.

	
CurveToken.mint(_to: address, _value: uint256) → bool [https://docs.python.org/3.8/library/functions.html#bool]

	Mint an amount of the token and assign it to an account. This encapsulates the modification of balances such that the proper events are emitted.

Returns True if not reverted.

	
CurveToken.burnFrom(_to: address, _value: uint256) → bool [https://docs.python.org/3.8/library/functions.html#bool]

	Burn an amount of the token from a given account.

	_to: Account whose tokens will be burned

	_value: Amount that will be burned

Returns True if not reverted.

Curve Token V3

The Curve Token V3 is more gas efficient than versions 1 and 2.

Note

Compared to the Curve Token V2 API, there have been the following changes:

	increaseAllowance and decreaseAllowance methods added to mitigate race conditions

The implementation for a Curve Token V3 may be viewed on GitHub [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy].

	
CurveToken.increaseAllowance(_spender: address, _added_value: uint256) → bool [https://docs.python.org/3.8/library/functions.html#bool]

	Increase the allowance granted to _spender by the msg.sender.

This is alternative to approve that can be used as a mitigation for the potential race condition.

	_spender: Address which will transfer the funds

	_added_value: Amount of to increase the allowance

Returns True if success.

	
CurveToken.decreaseAllowance(_spender: address, _subtracted_value: uint256) → bool [https://docs.python.org/3.8/library/functions.html#bool]

	Decrease the allowance granted to _spender by the msg.sender.

This is alternative to {approve} that can be used as a mitigation for the potential race condition.

	_spender: Address which will transfer the funds

	_subtracted_value: Amount of to decrease the allowance

Returns True if success.

Curve StableSwap Exchange: Deposit Contracts

Curve pools may rely on a different contract, called a deposit zap for the addition and removal of underlying coins. This is particularly useful for lending pools, which may only support the addition/removal of wrapped coins. Furthermore, deposit zaps are also useful for metapools, which do not support the addition/removal of base pool coins.

Lending Pool Deposits

While Curve lending pools support swaps in both the wrapped and underlying coins, not all lending pools allow liquidity providers to deposit or withdraw the underlying coin.

For example, the Compound Pool allows swaps between cDai and cUSDC (wrapped coins), as well as swaps between DAI and USDC (underlying coins). However, liquidity providers are not able to deposit DAI or USDC to the pool directly. The main reason for why this is not supported by all Curve lending pools lies in the size limit of contracts [https://github.com/ethereum/EIPs/blob/master/EIPS/eip-170.md]. Lending pools may differ in complexity and can end up being very close to the contract byte code size limit. In order to overcome this restriction, liquidity can be added and removed to and from a lending pool in the underlying coins via a different contract, called a deposit zap, tailored to lending pools.

For an overview of the Curve lending pool implementation, please refer to the Lending Pool section.

The template source code for a lending pool deposit zap may be viewed on GitHub [https://github.com/curvefi/curve-contract/blob/master/contracts/pool-templates/y/DepositTemplateY.vy].

Note

Lending pool deposit zaps may differ in their API. Older pools do not implement the newer API template [https://github.com/curvefi/curve-contract/blob/master/contracts/pool-templates/y/DepositTemplateY.vy].

Deposit Zap API (OLD)

Older Curve lending pool deposit zaps do not implement the template API [https://github.com/curvefi/curve-contract/blob/master/contracts/pool-templates/y/DepositTemplateY.vy]. The deposit zaps which employ an older API are:

	DepositBUSD: BUSD pool deposit zap [https://etherscan.io/address/0xb6c057591e073249f2d9d88ba59a46cfc9b59edb#code]

	DepositCompound: Compound pool deposit zap [https://etherscan.io/address/0xeb21209ae4c2c9ff2a86aca31e123764a3b6bc06#code]

	DepositPAX: PAX pool deposit zap [https://etherscan.io/address/0xa50ccc70b6a011cffddf45057e39679379187287#code]

	DepositUSDT: USDT pool deposit zap [https://etherscan.io/address/0xac795d2c97e60df6a99ff1c814727302fd747a80#code]

	DepositY: Y pool deposit zap [https://etherscan.io/address/0xbbc81d23ea2c3ec7e56d39296f0cbb648873a5d3#readContract]

While not a lending pool, note that the following contract also implements the newer deposit zap API:

	DepositSUSD: SUSD pool deposit zap [https://etherscan.io/address/0xfcba3e75865d2d561be8d220616520c171f12851#code]

Get Deposit Zap Information

Note

Getters generated for public arrays changed between Vyper 0.1.x and 0.2.x to accept uint256 instead of int128 in order to handle the lookups. Older deposit zap contracts (v1) use vyper 0.1.x..., while newer zaps (v2) use vyper 0.2.x....

The following Brownie console interaction examples are using the Compound Pool Deposit Zap [https://etherscan.io/address/0xeb21209ae4c2c9ff2a86aca31e123764a3b6bc06].

	
DepositZap.curve() → address: view

	Getter for the pool associated with this deposit contract.

>>> zap.curve()
'0xA2B47E3D5c44877cca798226B7B8118F9BFb7A56'

	
DepositZap.underlying_coins(i: int128) → address: view

	Getter for the array of underlying coins within the associated pool.

	i: Index of the underlying coin for which to get the address

>>> zap.underlying_coins(0)
'0x6B175474E89094C44Da98b954EedeAC495271d0F'
>>> zap.underlying_coins(1)
'0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48'

	
DepositZap.coins(i: int128) → address: view

	Getter for the array of wrapped coins within the associated pool.

	i: Index of the coin for which to get the address

>>> zap.coins(0)
'0x5d3a536E4D6DbD6114cc1Ead35777bAB948E3643'
>>> zap.coins(1)
'0x39AA39c021dfbaE8faC545936693aC917d5E7563'

	
DepositZap.token() → address: view

	Getter for the LP token of the associated pool.

>>> zap.token()
'0x845838DF265Dcd2c412A1Dc9e959c7d08537f8a2'

Adding/Removing Liquidity

	
DepositZap.add_liquidity(uamounts: uint256[N_COINS], min_mint_amount: uint256)

	Wrap underlying coins and deposit them in the pool

	uamounts: List of amounts of underlying coins to deposit

	min_mint_amount: Minimum amount of LP token to mint from the deposit

	
DepositZap.remove_liquidity(_amount: uint256, min_uamounts: uint256[N_COINS])

	Withdraw and unwrap coins from the pool.

	_amount: Quantity of LP tokens to burn in the withdrawal

	min_uamounts: Minimum amounts of underlying coins to receive

	
DepositZap.remove_liquidity_imbalance(uamounts: uint256[N_COINS], max_burn_amount: uint256)

	Withdraw and unwrap coins from the pool in an imbalanced amount.

	uamounts: List of amounts of underlying coins to withdraw

	max_burn_amount: Maximum amount of LP token to burn in the withdrawal

	
DepositZap.remove_liquidity_one_coin(_token_amount: uint256, i: int128, min_uamount: uint256, donate_dust: bool [https://docs.python.org/3.8/library/functions.html#bool] = False)

	Withdraw and unwrap a single coin from the pool

	_token_amount: Amount of LP tokens to burn in the withdrawal

	i: Index value of the coin to withdraw

	min_uamount: Minimum amount of underlying coin to receive

	
DepositZap.calc_withdraw_one_coin(_token_amount: uint256, i: int128) → uint256

	Calculate the amount received when withdrawing a single underlying coin.

	_token_amount: Amount of LP tokens to burn in the withdrawal

	i: Index value of the coin to withdraw

	
DepositZap.withdraw_donated_dust()

	Donates any LP tokens of the associated pool held by this contract to the contract owner.

Deposit Zap API (NEW)

Compared to the older deposit zaps, the newer zaps mainly optimize for gas efficiency. The API is only modified in part, specifically with regards to return values and variable naming.

Get Deposit Zap Information

	
DepositZap.curve() → address: view

	Getter for the pool associated with this deposit contract.

	
DepositZap.underlying_coins(i: uint256) → address: view

	Getter for the array of underlying coins within the associated pool.

	i: Index of the underlying coin for which to get the address

	
DepositZap.coins(i: uint256) → address: view

	Getter for the array of wrapped coins within the associated pool.

	i: Index of the coin for which to get the address

	
DepositZap.lp_token() → address: view

	Getter for the LP token of the associated pool.

Adding/Removing Liquidity

	
DepositZap.add_liquidity(_underlying_amounts: uint256[N_COINS], _min_mint_amount: uint256) → uint256

	Wrap underlying coins and deposit them in the pool

	_underlying_amounts: List of amounts of underlying coins to deposit

	_min_mint_amount: Minimum amount of LP tokens to mint from the deposit

Returns the amount of LP token received in exchange for the deposited amounts.

	
DepositZap.remove_liquidity(_amount: uint256, _min_underlying_amounts: uint256[N_COINS]) → uint256[N_COINS]

	Withdraw and unwrap coins from the pool.

	_amount: Quantity of LP tokens to burn in the withdrawal

	_min_underlying_amounts: Minimum amounts of underlying coins to receive

Returns list of amounts of underlying coins that were withdrawn.

	
DepositZap.remove_liquidity_imbalance(_underlying_amounts: uint256[N_COINS], _max_burn_amount: uint256) → uint256[N_COINS]

	Withdraw and unwrap coins from the pool in an imbalanced amount. Amounts in _underlying_amounts correspond to withdrawn amounts before any fees charge for unwrapping.

	_underlying_amounts: List of amounts of underlying coins to withdraw

	_max_burn_amount: Maximum amount of LP token to burn in the withdrawal

Returns list of amounts of underlying coins that were withdrawn.

	
DepositZap.remove_liquidity_one_coin(_amount: uint256, i: int128, _min_underlying_amount: uint256) → uint256

	Withdraw and unwrap a single coin from the pool

	_amount: Amount of LP tokens to burn in the withdrawal

	i: Index value of the coin to withdraw

	_min_underlying_amount: Minimum amount of underlying coin to receive

Returns amount of underlying coin received.

Metapool Deposits

While Curve metapools support swaps between base pool coins, the base pool LP token and metapool coins, they do not allow liquidity providers to deposit and/or withdraw base pool coins.

For example, the GUSD metapool is a pool consisting of GUSD and 3CRV (the LP token of the 3Pool) and allows for swaps between GUSD, DAI, USDC, USDT and 3CRV. However, liquidity providers are not able to deposit DAI, USDC or USDT to the pool directly. The main reason why this is not possible lies in the maximum byte code size of contracts. Metapools are complex and can therefore end up being very close to the contract byte code size limit. In order to overcome this restriction, liquidity can be added and removed to and from a metapool in the base pool’s coins through a metapool deposit zap.

For an overview of the Curve metapool implementation, please refer to the Metapool section.

The template source code for a metapool deposit “zap” may be viewed on GitHub [https://github.com/curvefi/curve-contract/blob/master/contracts/pool-templates/meta/DepositTemplateMeta.vy].

A list of all deployed metapool deposit zaps can be found here.

Note

Metapool deposit zaps contain the following private and hardcoded constants:

	N_COINS: Number of coins in the metapool (excluding base pool coins)

	BASE_N_COINS: Number of coins in the base pool

	N_ALL_COINS: All coins in the metapool, excluding the base pool LP token (N_COINS + BASE_N_COINS - 1)

Get Deposit Zap Information

	
DepositZap.pool() → address: view

	Getter for the metapool associated with this deposit contract.

	
DepositZap.base_pool() → address: view

	Getter for the base pool of the metapool associated with this deposit contract.

	
DepositZap.base_coins(i: uint256) → address: view

	Getter for the array of the coins of the metapool’s base pool.

	i: Index of the underlying coin for which to get the address

	
DepositZap.coins(i: uint256) → address: view

	Getter for the array of metapool’s coins.

	i: Index of the coin for which to get the address

	
DepositZap.token() → address: view

	Getter for the LP token of the associated metapool.

Adding/Removing Liquidity

Note

For methods taking the index argument i, a number in the range from 0 to N_ALL_COINS - 1 is valid. This refers to all coins apart from the base pool LP token.

	
DepositZap.add_liquidity(_amounts: uint256[N_ALL_COINS], _min_mint_amount: uint256) → uint256

	Wrap underlying coins and deposit them in the pool.

	_amounts: List of amounts of underlying coins to deposit

	_min_mint_amount: Minimum amount of LP tokens to mint from the deposit

Returns the amount of LP token received in exchange for depositing.

	
DepositZap.remove_liquidity(_amount: uint256, _min_amounts: uint256[N_ALL_COINS]) → uint256[N_ALL_COINS]

	Withdraw and unwrap coins from the pool.

	_amount: Quantity of LP tokens to burn in the withdrawal

	_min_amounts: Minimum amounts of underlying coins to receive

Returns a list of amounts of underlying coins that were withdrawn.

	
DepositZap.remove_liquidity_one_coin(_token_amount: uint256, i: int128, _min_amount: uint256) → uint256

	Withdraw and unwrap a single coin from the metapool.

	_token_amount: Amount of LP tokens to burn in the withdrawal

	i: Index value of the coin to withdraw

	_min_amount: Minimum amount of underlying coin to receive

Returns the amount of the underlying coin received.

	
DepositZap.remove_liquidity_imbalance(_amounts: uint256[N_ALL_COINS], _max_burn_amount: uint256) → uint256

	Withdraw coins from the pool in an imbalanced amount

	_amounts: List of amounts of underlying coins to withdraw

	_max_burn_amount: Maximum amount of LP token to burn in the withdrawal

Returns the actual amount of the LP token burned in the withdrawal.

	
DepositZap.calc_withdraw_one_coin(_token_amount: uint256, i: int128) → uint256

	Calculate the amount received when withdrawing and unwrapping a single coin

	_token_amount: Amount of LP tokens to burn in the withdrawal

	i: Index value of the coin to withdraw (i should be in the range from 0 to N_ALL_COINS - 1, where the LP token of the base pool is removed).

Returns the amount of coin i received.

	
DepositZap.calc_token_amount(_amounts: uint256[N_ALL_COINS], _is_deposit: bool [https://docs.python.org/3.8/library/functions.html#bool]) → uint256

	Calculate addition or reduction in token supply from a deposit or withdrawal.

	_amounts: Amount of each underlying coin being deposited

	_is_deposit: Set True for deposits, False for withdrawals

Returns the expected amount of LP tokens received.

Cross Asset Swaps

Curve integrates with Synthetix to allow large scale swaps between different asset classes with minimal slippage. Utilizing Synthetix’ zero-slippage synth conversions and Curve’s deep liquidity and low fees, we can perform fully on-chain cross asset swaps at scale with a 0.38% fee and minimal slippage.

Cross asset swaps are performed using the SynthSwap contract, deployed to the mainnet at the following address:

0x58A3c68e2D3aAf316239c003779F71aCb870Ee47 [https://etherscan.io/address/0x58A3c68e2D3aAf316239c003779F71aCb870Ee47#code]

Source code and information on the technical implementation are available on Github [https://github.com/curvefi/curve-cross-asset-swaps].

How it Works

As an example, suppose we have asset A and wish to exchange it for asset D. For this swap to be possible, A and D must meet the following requirements:

	Must be of different asset classes (e.g. USD, EUR, BTC, ETH)

	Must be exchangeable for a Synthetic asset within one of Curve’s pools (e.g. sUSD, sBTC)

The swap can be visualized as A -> B -> C | C -> D:

	The initial asset A is exchanged on Curve for B, a synth of the same asset class.

	B is converted to C, a synth of the same asset class as D.

	A settlement period [https://docs.synthetix.io/integrations/settlement/] passes to account for sudden price movements between B and C.

	Once the settlement period has passed, C is exchanged on Curve for the desired asset D.

Settler NFTs

Swaps cannot occur atomically due to the Synthetix settlement period. Each unsettled swap is represented by an ERC721 non-fungible token.

	Each NFT has a unique token ID. Token IDs are never re-used. The NFT is minted upon initiating the swap and burned when the swap is completed.

	The NFT, and associated right to claim, is fully transferable. It is not possible to transfer the rights to a partial claim. The approved operator for an NFT also has the right to complete the swap with the underlying asset.

	Token IDs are not sequential. This contract does not support the enumerable ERC721 extension. This decision is based on gas efficiency.

Front-running Considerations

The benefits from these swaps are most apparent when the exchange amount is greater than $1m USD equivalent. As such, the initiation of a swap gives a strong indicator other market participants that a 2nd post-settlement swap will be coming. We attempt to minimize the risks from this in several ways:

	C -> D is not declared on-chain when performing the swap from A -> C.

	It is possible to perform a partial swap from C -> D, and to swap into multiple final assets. The NFT persists until it has no remaining underlying balance of C.

	There is no fixed time frame for the second swap. A user can perform it immediately or wait until market conditions are more favorable.

	It is possible to withdraw C without performing a second swap.

	It is possible to perform additional A -> B -> C swaps to increase the balance of an already existing NFT.

The range of available actions and time frames make it significantly more difficult to predict the outcome of a swap and trade against it.

Exchange API

Finding Swappable Assets

In general, any asset that is within a Curve pool also containing a Synth may be used in a cross asset swap. You can use the following view methods to confirm whether or not an asset is supported:

	
StableSwap.synth_pools(_synth: address) → address: view

	Get the address of the Curve pool used to swap a synthetic asset.

If this function returns ZERO_ADDRESS, the given synth cannot be used within cross-asset swaps.

	
StableSwap.swappable_synth(_token: address) → address: view

	Get the address of the synthetic asset that _token may be directly swapped for.

If this function returns ZERO_ADDRESS, the given token cannot be used within a cross-asset swap.

>>> synth_swap = Contract('0x58A3c68e2D3aAf316239c003779F71aCb870Ee47')
>>> dai = Contract('0x6b175474e89094c44da98b954eedeac495271d0f')

>>> synth_swap.swappable_synth(dai) # returns sUSD
'0x57Ab1ec28D129707052df4dF418D58a2D46d5f51'

>>> synth_swap.synth_pools('0x57ab1ec28d129707052df4df418d58a2d46d5f51') # returns Curve sUSD pool
'0xA5407eAE9Ba41422680e2e00537571bcC53efBfD'

Estimating Swap Amounts

	
StableSwap.get_swap_into_synth_amount(_from: address, _synth: address, _amount: uint256) → uint256: view

	Return the amount received when performing a cross-asset swap.

This method is used to calculate _expected when calling swap_into_synth. You should reduce the value slightly to account for market movement prior to the transaction confirming.

	_from: Address of the initial asset being exchanged.

	_synth: Address of the synth being swapped into.

	_amount: Amount of _from to swap.

Returns the expected amount of _synth received in the swap.

>>> synth_swap = Contract('0x58A3c68e2D3aAf316239c003779F71aCb870Ee47')
>>> dai = Contract('0x6b175474e89094c44da98b954eedeac495271d0f')
>>> sbtc = Contract('0xfe18be6b3bd88a2d2a7f928d00292e7a9963cfc6')

>>> synthswap.get_swap_into_synth_amount(dai, sbtc, 100000 * 1e18)
2720559215249173192

	
StableSwap.get_swap_from_synth_amount(_synth: address, _to: address, _amount: uint256) → uint256: view

	Return the amount received when swapping out of a settled synth.

This method is used to calculate _expected when calling swap_from_synth. You should reduce the value slightly to account for market movement prior to the transaction confirming.

	_synth: Address of the synth being swapped out of.

	_to: Address of the asset to swap into.

	_amount: Amount of _synth being exchanged.

Returns the expected amount of _to received in the swap.

>>> synth_swap = Contract('0x58A3c68e2D3aAf316239c003779F71aCb870Ee47')
>>> sbtc = Contract('0xfe18be6b3bd88a2d2a7f928d00292e7a9963cfc6')
>>> wbtc = Contract('0x2260fac5e5542a773aa44fbcfedf7c193bc2c599')

>>> synthswap.get_swap_from_synth_amount(sbtc, wbtc, 2720559215249173192)
273663013

	
StableSwap.get_estimated_swap_amount(_from: address, _to: address, _amount: uint256) → uint256: view

	Estimate the final amount received when swapping between _from and _to.

Note that the actual received amount may be different due to rate changes during the settlement period.

	_from: Address of the initial asset being exchanged.

	_to: Address of the asset to swap into.

	_amount: Amount of _from being exchanged.

Returns the estimated amount of _to received.

>>> synth_swap = Contract('0x58A3c68e2D3aAf316239c003779F71aCb870Ee47')
>>> dai = Contract('0x6b175474e89094c44da98b954eedeac495271d0f')
>>> wbtc = Contract('0x2260fac5e5542a773aa44fbcfedf7c193bc2c599')

>>> synthswap.get_estimated_swap_amount(dai, wbtc, 100000 * 1e18)
273663013

Note

This method is for estimating the received amount from a complete swap over two transactions. If _to is a Synth, you should use get_swap_into_synth_amount instead.

Initiating a Swap

All cross asset swaps are initiated with the following method:

	
StableSwap.swap_into_synth(_from: address, _synth: address, _amount: uint256, _expected: uint256, _receiver: address = msg.sender, _existing_token_id: uint256 = 0) → uint256: payable

	Perform a cross-asset swap between _from and _synth.

Synth swaps require a settlement time [https://docs.synthetix.io/integrations/settlement/] to complete and so the newly generated synth cannot immediately be transferred onward. Calling this function mints an NFT representing ownership of the unsettled synth.

	_from: Address of the initial asset being exchanged. For Ether swaps, use 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE.

	_synth: Address of the synth being swapped into.

	_amount: Amount of _from to swap. If you are swapping from Ether, you must also send exactly this much Ether with the transaction. If you are swapping any other asset, you must have given approval to the swap contract to transfer at least this amount.

	_expected: Minimum amount of _synth to receive.

	_receiver: Address of the recipient of _synth, if not given, defaults to the caller.

	_existing_token_id: Token ID to deposit _synth into. If not given, a new NFT is minted for the generated synth. When set as non-zero, the token ID must be owned by the caller and must already represent the same synth as is being swapped into.

Returns the uint256 token ID of the NFT representing the unsettled swap. The token ID is also available from the emitted TokenUpdate event.

>>> alice = accounts[0]

>>> synth_swap = Contract('0x58A3c68e2D3aAf316239c003779F71aCb870Ee47')
>>> dai = Contract('0x6b175474e89094c44da98b954eedeac495271d0f')
>>> sbtc = Contract('0xfe18be6b3bd88a2d2a7f928d00292e7a9963cfc6')

>>> expected = synth_swap.get_swap_into_synth_amount(dai, sbtc, dai.balanceOf(alice)) * 0.99

>>> tx = synth_swap.swap_into_synth(dai, sbtc, expected, {'from': alice})
Transaction sent: 0x83b311af19be08b8ec6241c3e834ccdf3b22586971de82a76a641e43bdf2b3ee
 Gas price: 20 gwei Gas limit: 1200000 Nonce: 5

>>> tx.events['TokenUpdate']['token_id']
2423994707895209386239865227163451060473904619065

Getting Info about an Unsettled Swap

	
StableSwap.token_info(_token_id: uint256) → address, address, uint256, uint256: view

	Get information about the underlying synth represented by an NFT.

	_token_id: NFT token ID to query info about. Reverts if the token ID does not exist.

Returns the owner of the NFT, the address of the underlying synth, the balance of the underlying synth, and the current maximum number of seconds until the synth may be settled.

>>> synth_swap = Contract('0x58A3c68e2D3aAf316239c003779F71aCb870Ee47')
>>> synthswap.token_info(2423994707895209386239865227163451060473904619065).dict()
{
 'owner': "0xEF422dBBF46120dE627fFb913C9AFaD44c735618",
 'synth': "0x57Ab1ec28D129707052df4dF418D58a2D46d5f51",
 'time_to_settle': 0,
 'underlying_balance': 1155647333395694644849
}

Completing a Swap

Once the settlement period on a swap has finished, any of the following methods may be used to complete the swap.

	
StableSwap.swap_from_synth(_token_id: uint256, _to: address, _amount: uint256, _expected: uint256, _receiver: address = msg.sender) → uint256: nonpayable

	Swap the underlying synth represented by an NFT into another asset.

Callable by the owner or operator of _token_id after the synth settlement period has passed. If _amount is equal to the total remaining balance of the synth represented by the NFT, the NFT is burned.

	_token_id: The identifier for an NFT.

	_to: Address of the asset to swap into.

	_amount: Amount of the underlying synth to swap.

	_expected: Minimum amount of _to to receive.

	_receiver: Address to send the final received asset to. If not given, defaults to the caller.

Returns the remaining balance of the underlying synth within the active NFT.

>>> wbtc = Contract('0x2260fac5e5542a773aa44fbcfedf7c193bc2c599')

>>> amount = synth_swap.token_info(token_id)['underlying_balance']
>>> expected = swynth_swap.get_swap_from_synth_amount(sbtc, wbtc, amount) * 0.99

>>> synth_swap.swap_from_synth(token_id, wbtc, amount, expected, {'from': alice})
Transaction sent: 0x83b311af19be08b8ec6241c3e834ccdf3b22586971de82a76a641e43bdf2b3ee
 Gas price: 20 gwei Gas limit: 800000 Nonce: 6

	
StableSwap.withdraw(_token_id: uint256, _amount: uint256, _receiver: address = msg.sender) → uint256: nonpayable

	Withdraw the underlying synth represented by an NFT.

Callable by the owner or operator of _token_id after the synth settlement period has passed. If _amount is equal to the total remaining balance of the synth represented by the NFT, the NFT is burned.

	_token_id: The identifier for an NFT.

	_amount: Amount of the underlying synth to withdraw.

	_receiver: Address of the recipient of the withdrawn synth. If not given, defaults to the caller.

Returns the remaining balance of the underlying synth within the active NFT.

>>> amount = synth_swap.token_info(token_id)['underlying_balance']

>>> synth_swap.withdraw(token_id, amount, {'from': alice})
Transaction sent: 0x83b311af19be08b8ec6241c3e834ccdf3b22586971de82a76a641e43bdf2b3ee
 Gas price: 20 gwei Gas limit: 800000 Nonce: 6

	
StableSwap.settle(_token_id: uint256) → bool: nonpayable

	Settle the synth represented in an NFT. Note that settlement is performed when swapping or withdrawing, there is no requirement to call this function separately.

	_token_id The identifier for an NFT.

Returns True.

The Curve DAO

Curve DAO consists of multiple smart contracts connected by Aragon [https://github.com/aragon/aragonOS]. Interaction with Aragon occurs through a modified implementation [https://github.com/curvefi/curve-aragon-voting] of the Aragon Voting App [https://github.com/aragon/aragon-apps/tree/master/apps/voting]. Aragon’s standard one token, one vote method is replaced with a weighting system based on locking tokens.

Curve DAO has a token (CRV [https://etherscan.io/token/0xd533a949740bb3306d119cc777fa900ba034cd52]) which is used for both governance and value accrual.

Source code for the Curve DAO can be found on Github [https://github.com/curvefi/curve-dao-contracts].

Curve DAO: Vote-Escrowed CRV

Participating in Curve DAO governance requires that an account have a balance of vote-escrowed CRV (veCRV). veCRV is a non-standard ERC20 implementation, used within the Aragon DAO to determine each account’s voting power.

veCRV is represented by the VotingEscrow contract, deployed to the Ethereum mainnet at:

0x5f3b5DfEb7B28CDbD7FAba78963EE202a494e2A2 [https://etherscan.io/address/0x5f3b5dfeb7b28cdbd7faba78963ee202a494e2a2]

veCRV cannot be transferred. The only way to obtain veCRV is by locking CRV. The maximum lock time is four years. One CRV locked for four years provides an initial balance of one veCRV.

A user’s veCRV balance decays linearly as the remaining time until the CRV unlock decreases. For example, a balance of 4000 CRV locked for one year provides the same amount of veCRV as 2000 CRV locked for two years, or 1000 CRV locked for four years.

Implementation Details

User voting power \(w_i\) is linearly decreasing since the moment of lock. So does the total voting power \(W\). In order to avoid periodic check-ins, every time the user deposits, or withdraws, or changes the locktime, we record user’s slope and bias for the linear function \(w_i(t)\) in the public mapping user_point_history. We also change slope and bias for the total voting power \(W(t)\) and record it in point_history. In addition, when a user’s lock is scheduled to end, we schedule change of slopes of \(W(t)\) in the future in slope_changes. Every change involves increasing the epoch by 1.

This way we don’t have to iterate over all users to figure out, how much should \(W(t)\) change by, neither we require users to check in periodically. However, we limit the end of user locks to times rounded off by whole weeks.

Slopes and biases change both when a user deposits and locks governance tokens, and when the locktime expires. All the possible expiration times are rounded to whole weeks to make number of reads from blockchain proportional to number of missed weeks at most, not number of users (which is potentially large).

Querying Balances, Locks and Supply

	
VotingEscrow.balanceOf(addr: address, _t: uint256 = block.timestamp) → uint256

	Get the current voting power for an address.

	addr: User wallet address

>>> vote_escrow = Contract('0x5f3b5DfEb7B28CDbD7FAba78963EE202a494e2A2')

>>> vote_escrow.balanceOf('0xF89501B77b2FA6329F94F5A05FE84cEbb5c8b1a0')
5464191329389144503333564

	
VotingEscrow.balanceOfAt(addr: address, _block: uint256) → uint256

	Measure the voting power of an address at a historic block height.

This function is taken from the MiniMe [https://github.com/Giveth/minime] ERC20 implementation and is required for compatibility with Aragon.

	addr: User wallet address

	_block: Block to calculate the voting power at

>>> height = len(chain) - 10000 # ten thousand blocks prior to the current block
>>> vote_escrow.balanceOfAt('0xF89501B77b2FA6329F94F5A05FE84cEbb5c8b1a0', height)
5470188311017698310628752

	
VotingEscrow.totalSupply() → uint256

	Calculate the current total voting power.

>>> vote_escrow.totalSupply()
102535077684041114817306735

	
VotingEscrow.totalSupplyAt(_block: uint256) → uint256

	Calculate the total voting power at a historic block height.

	_block Block to calculate the total voting power at.

>>> height = len(chain) - 10000 # ten thousand blocks prior to the current block
>>> vote_escrow.totalSupplyAt(height)
101809514082846807874928588

	
VotingEscrow.locked(_user: address)

	Get information about the current CRV lock for an address.

	_user: Address to query.

Returns amount of CRV currently locked, and the epoch time that the lock expires.

>>> vote_escrow.locked('0xF89501B77b2FA6329F94F5A05FE84cEbb5c8b1a0').dict()
{
 'amount': 5664716612269392397633736,
 'end': 1736985600
}

Working with Vote-Locks

	
VotingEscrow.create_lock(_value: uint256, _unlock_time: uint256)

	Deposit CRV into the contract and create a new lock.

Prior to calling this function, the contract must be approved to transfer at least _value CRV. A new lock cannot be created when an existing lock already exists.

	_value: The amount of CRV to deposit.

	_unlock_time Epoch time when tokens unlock. This value is rounded down to the nearest whole week. The maximum duration for a lock is four years.

>>> import time
>>> crv = Contract('0xd533a949740bb3306d119cc777fa900ba034cd52')
>>> vote_escrow = Contract('0x5f3b5DfEb7B28CDbD7FAba78963EE202a494e2A2')

>>> crv.approve(vote_escrow, 2**256-1, {'from': alice})
Transaction sent: 0xa7978a8d7fc185d9194bd3c2fa1801ccc57ad4edcfcaff7b5dab1c9101b78cf9
 Gas price: 20.0 gwei Gas limit: 56299 Nonce: 23

>>> amount = crv.balanceOf(alice)
>>> unlock_time = int(time.time() + 86400 * 365 * 4)
>>> vote_escrow.create_lock(amount, unlock_time, {'from': alice})
Transaction sent: 0xa7978a8d7fc185d9194bd3c2fa1801ccc57ad4edcfcaff283958329291b78cf1
 Gas price: 20.0 gwei Gas limit: 307234 Nonce: 24

	
VotingEscrow.increase_amount(_value: uint256)

	Deposit additional CRV into an existing lock.

	_value: The amount of CRV to deposit.

>>> amount = crv.balanceOf(alice)
>>> vote_escrow.increase_amount(amount, {'from': alice})
Transaction sent: 0xa7978a8d7fc185d9194bd3c2fa1801ccc57ad4edcfcaff7b5dab1c9101b78cf9
 Gas price: 20.0 gwei Gas limit: 156299 Nonce: 24

	
VotingEscrow.increase_unlock_time(_unlock_time: uint256)

	Extend the unlock time on a lock that already exists.

	_unlock_time New epoch time for unlocking. This value is rounded down to the nearest whole week. The maximum duration for a lock is four years.

>>> unlock_time = int(time.time() + 86400 * 365 * 4)
>>> vote_escrow.increase_unlock_time(unlock_time, {'from': alice})
Transaction sent: 0xa7978a8d7fc185d9194bd3c2fa1801ccc57ad4edcfcaff7b5dab1c9101b78cf9
 Gas price: 20.0 gwei Gas limit: 282041 Nonce: 24

	
VotingEscrow.withdraw()

	Withdraw deposited CRV tokens once a lock has expired.

>>> vote_escrow.withdraw({'from': alice})
Transaction sent: 0xa7978a8d7fc185d9194bd3c2fa1801ccc57ad4edcfcaff7b5dab1c9101b78cf9
 Gas price: 20.0 gwei Gas limit: 178629 Nonce: 24

The Curve DAO: Liquidity Gauges and Minting CRV

Curve incentivizes liquidity providers with the CRV, the protocol governance token. Allocation, distribution and minting of CRV are managed via several related DAO contracts:

	LiquidityGauge: Measures liquidity provided by users over time, in order to distribute CRV and other rewards

	GaugeController: Central controller that maintains a list of gauges, weights and type weights, and coordinates the rate of CRV production for each gauge

	Minter: CRV minting contract, generates new CRV according to liquidity gauges

Implementation Details

CRV Inflation

CRV follows a piecewise linear inflation schedule. The inflation is reduced by \(2^{1/4}\) each year. Each time the inflation reduces, a new mining epoch starts.

[image: Inflation Schedule]The initial supply of CRV is \(1.273\) billion tokens, which is \(42\%\) of the eventual \(t\rightarrow\infty"\) supply of \(\approx 3.03\) billion tokens. All of these initial tokens are gradually vested (with every block). The initial inflation rate which supports the above inflation schedule is
\(r=22.0\%\) (279.6 millions per year). All of the inflation is distributed to Curve liquidity providers, according to measurements taken by the gauges. During the first year, the approximate inflow into circulating supply is 2 million CRV per day. The initial circulating supply is 0.

Liquidity Gauges

Inflation is directed to users who provide liquidity within the protocol. This usage is measured via “Liquidity Gauge” contracts. Each pool has an individual liquidity gauge. The Gauge Controller maintains a list of gauges and their types, with the weights of each gauge and type.

To measure liquidity over time, the user deposits their LP tokens into the liquidity gauge. Coin rates which the gauge is getting depends on current inflation rate, gauge weight, and gauge type weights. Each user receives a share of newly minted CRV proportional to the amount of LP tokens locked. Additionally, rewards may be boosted by up to factor of 2.5 if the user vote-locks tokens for Curve governance in the Voting Escrow contract.

Suppose we have the inflation rate \(r\) changing with every epoch (1 year), gauge weight \(w_g\) and gauge type weight \(w_t\). Then, all the gauge handles the stream of inflation with the rate \(r^{\prime} = w_g w_t r\) which it can update every time \(w_g, w_t\), or mining epoch changes.

To calculate a user’s share of \(r^{\prime}\), we must calculate the integral: \($I_u = \int \frac{r^{\prime}(t)\, b_u(t)}{S(t)}\,dt,\) where \(b_u(t)\) is the balance supplied by the user (measured in LP tokens) and \(S(t)\) is total liquidity supplied by users, depending on the time \(t\); the value \(I_u\) gives the amount of tokens which the user has to have minted to them. The user’s balance \(b_u\) changes every time the user \($u\) makes a deposit or withdrawal, and \(S\) changes every time _any_ user makes a deposit or withdrawal (so \($S\) can change many times in between two events for the user \(u"\). In the liquidity gauge contract, the vaule of \(I_u\) is recorded per-user in the public integrate_fraction mapping.

To avoid requiring that all users to checkpoint periodically, we keep recording values of the following integral (named integrate_inv_supply in the contract):

\($I_{is}(t) = \int_0^{t} \frac{r^{\prime}(t)}{S(t)}dt.\)

The value of \(I_{is}\) is recorded at any point any user deposits or withdraws, as well as every time the rate \(r^{\prime}\) changes (either due to weight change or change of mining epoch).

When a user deposits or withdraws, the change in \(I_u\) can be calculated as the current (before user’s action) value of \(I_{is}\) multiplied by the pre-action user’s balance, and sumed up across the user’s balances: \($I_u(t_k) =\sum_k b_u(t_k) \left[I_{is}(t_k) - I_{is}(t_{k-1})\right].\) The per-user integral is possible to repalce with this sum because \(b_u(t)\) changed for all times between \(t_{k-1}\) and \(t_k\).

Boosting

In order to incentivize users to participate in governance, and additionally create stickiness for liquidity, we implement the following mechanism. A user’s balance, counted in the liquidity gauge, gets boosted by users locking CRV tokens in Voting Escrow contract, depending on their vote weight \(w_i\): \(b_u^* = \min\left(0.4\,b_u + 0.6\,S\frac{w_i}{W},\, b_u \right).\) The value of \(w_i\) is taken at the time the user performs any action (deposit, withdrawal, withdrawal of minted CRV tokens) and is applied until the next action this user performs.

If no users vote-lock any CRV (or simply don’t have any), the inflation will simply be distributed proportionally to the liquidity \(b_u\) each one of them provided. However, if a user stakes enough CRV, they are able to boost their stream of CRV by up to factor of 2.5 (reducing it slightly for all users who are not doing that).

Implementation details are such that a user gets the boost at the time of the last action or checkpoint. Since the voting power decreases with time, it is favorable for users to apply a boost and do no further actions until they vote-lock more tokens. However, once the vote-lock expires, everyone can “kick” the user by creating a checkpoint for that user and, essentially, resetting the user to no boost if they have no voting power at that point already.

Finally, the gauge is supposed to not miss a full year of inflation (e.g. if there were no interactions with the guage for the full year). If that ever happens, the abandoned gauge gets less CRV.

Gauge Weight Voting

Users can allocate their veCRV towards one or more liquidity gauges. Gauges receive a fraction of newly minted CRV tokens proportional to how much veCRV the gauge is allocated. Each user with a veCRV balance can change their preference at any time.

When a user applies a new weight vote, it gets applied at the start of the next epoch week. The weight vote for any one gauge cannot be changed more often than once in 10 days.

The Gauge Controller

The “Gauge Controller” maintains a list of gauges and their types, with the weights of each gauge and type. In order to implement weight voting, GaugeController has to include parameters handling linear character of voting power each user has.

GaugeController records points (bias + slope) per gauge in vote_points, and _scheduled_ changes in biases and slopes for those points in vote_bias_changes and vote_slope_changes. New changes are applied at the start of each epoch week.

Per-user, per-gauge slopes are stored in vote_user_slopes, along with the power the user has used and the time their vote-lock ends.

The totals for slopes and biases for vote weight per gauge, and sums of those
per type, are scheduled / recorded for the next week, as well as the points
when voting power gets to 0 at lock expiration for some of users.

When a user changes their gauge weight vote, the change is scheduled for the next epoch week, not immediately. This reduces the number of reads from storage which must to be performed by each user: it is proportional to the number of weeks since the last change rather than the number of interactions from other users.

Gauge Types

Each liquidity gauge is assigned a type within the gauge controller. Grouping gauges by type allows the DAO to adjust the emissions according to type, making it possible to e.g. end all emissions for a single type.

Currently active gauge types are as follows:

	Ethereum (stableswap pools): 0

	Fantom: 1

	Polygon (Matic): 2

	xDai: 4

	Ethereum (crypto pools): 5

	Arbitrum 7

	Avalanche 8

	Harmony 9

Types 3 and 6 have been deprecated.

LiquidityGauge

Each pool has a unique liquidity gauge. Deployment addresses can be found in the addresses reference section of the documentation.

There are several versions of liquidity gauge contracts in use. Source code for these contracts is available on Github [https://github.com/curvefi/curve-dao-contracts/tree/master/contracts/gauges].

Querying Gauge Information

	
LiquidityGauge.lp_token() → address: view

	The address of the LP token that may be deposited into the gauge.

	
LiquidityGauge.totalSupply -> uint256: view

	The total amount of LP tokens that are currently deposited into the gauge.

	
LiquidityGauge.working_supply() → uint256: view

	The “working supply” of the gauge - the effective total LP token amount after all deposits have been boosted.

Querying User Information

	
LiquidityGauge.balanceOf(addr: address) → uint256: view

	The current amount of LP tokens that addr has deposited into the gauge.

	
LiquidityGauge.working_balances(addr: address) → uint256: view

	The “working balance” of a user - their effective balance after boost has been applied.

	
LiquidityGauge.claimable_tokens(addr: address) → uint256: nonpayable

	The amount of currently mintable CRV for addr from this gauge.

Note

Calling this function modifies the state [https://vyper.readthedocs.io/en/stable/control-structures.html#mutability]. Off-chain integrators can call it as though it were a view function, however on-chain integrators must use it as nonpayable or the call will revert.

>>> gauge.claimable_tokens.call(alice)
3849184923983248t5273

	
LiquidityGauge.integrate_fraction(addr: address) → uint256: view

	The total amount of CRV, both mintable and already minted, that has been allocated to addr from this gauge.

Checkpoints

	
LiquidityGauge.user_checkpoint(addr: address) → bool: nonpayable

	Record a checkpoint for addr, updating their boost.

Only callable by addr or Minter - you cannot trigger a checkpoint for another user.

	
LiquidityGauge.kick(addr: address): nonpayable

	Trigger a checkpoint for addr. Only callable when the current boost for addr is greater than it should be, due to an expired veCRV lock.

Deposits and Withdrawals

	
LiquidityGauge.deposit(amount: uint256, receiver: address = msg.sender): nonpayable

	Deposit LP tokens into the gauge.

Prior to depositing, ensure that the gauge has been approved to transfer amount LP tokens on behalf of the caller.

	amount: Amount of tokens to deposit

	receiver: Address to deposit for. If not given, defaults to the caller. If specified, the caller must have been previous approved via approved_to_deposit

>>> lp_token = Contract(gauge.lp_token())
>>> balance = lp_token.balanceOf(alice)

>>> lp_token.approve(gauge, balance, {'from': alice})
Transaction sent: 0xa791801ccc57ad4edcfcaff7b5dab1c9101b78cf978a8d7fc185d9194bd3c2fa
 Gas price: 20.0 gwei Gas limit: 56299 Nonce: 23

>>> gauge.deposit(balance, {'from': alice})
Transaction sent: 0xd4edcfcaff7b5dab1c9101b78cf978a8d7fc185d9194bd3c2faa791801ccc57a
 Gas price: 20.0 gwei Gas limit: 187495 Nonce: 24

	
LiquidityGauge.withdraw(amount: uint256): nonpayable

	Withdraw LP tokens from the gauge.

	amount: Amount of tokens to withdraw

>>> balance = gauge.balanceOf(alice)
>>> gauge.withdraw(balance, {'from': alice})
Transaction sent: 0x1b78cf978a8d7fc185d9194bd3c2faa791801ccc57ad4edcfcaff7b5dab1c910
 Gas price: 20.0 gwei Gas limit: 217442 Nonce: 25

	
LiquidityGauge.approved_to_deposit(caller: address, receiver: address) → bool: view

	

Return the approval status for caller to deposit LP tokens into the gauge on behalf of receiver.

	
LiquidityGauge.set_approve_deposit(depositor: address, can_deposit: bool): nonpayable

	Approval or revoke approval for another address to deposit into the gauge on behalf of the caller.

	depositor: Address to set approval for

	can_deposit: Boolean - can this address deposit on behalf of the caller?

>>> gauge.approved_to_deposit(bob, alice)
False

>>> gauge.set_approve_deposit(bob, True, {'from': alice})
Transaction sent: 0xc185d9194bd3c2faa791801ccc57ad4edcfcaff7b5dab1c9101b78cf978a8d7f
 Gas price: 20.0 gwei Gas limit: 47442 Nonce: 26

>>> gauge.approved_to_deposit(bob, alice)
True

Killing the Gauge

	
LiquidityGauge.kill_me(): nonpayable

	Toggle the killed status of the gauge.

This function may only be called by the ownership or emergency admins within the DAO.

A gauge that has been killed is unable to mint CRV. Any gauge weight given to a killed gauge effectively burns CRV. This should only be done in a case where a pool had to be killed due to a security risk, but the gauge was already voted in.

	
LiquidityGauge.is_killed() → bool: view

	The current killed status of the gauge.

LiquidityGaugeReward

Along with measuring liquidity for CRV distribution, LiquidityGaugeReward stakes LP tokens into an SNX staking rewards [https://github.com/Synthetixio/synthetix/blob/master/contracts/StakingRewards.sol] contract and handles distribution of an the additional rewards token. Rewards gauges include the full API of LiquidityGauge, with the following additional methods:

Querying Reward Information

	
LiquidityGaugeReward.reward_contract() → address: view

	The address of the staking rewards [https://github.com/Synthetixio/synthetix/blob/master/contracts/StakingRewards.sol] contract that LP tokens are staked into.

	
LiquidityGaugeReward.rewarded_token() → address: view

	The address of the reward token being received from reward_contract.

	
LiquidityGaugeReward.is_claiming_rewards() → bool: view

	Boolean indicating if rewards are currently being claimed by this gauge.

Calculating Claimable Rewards

Note

There is no single function that returns the currently claimable reward amount. To calculate:

>>> gauge.claimable_reward(alice) - gauge.claimed_rewards_for(alice)
97924174626247611803

	
LiquidityGaugeReward.claimable_reward(addr: address) → uint256: view

	The total earned reward tokens, both claimed and unclaimed, for addr.

	
LiquidityGaugeReward.claimed_rewards_for(addr: address) → uint256: view

	The number of reward tokens already claimed for addr.

Claiming Rewards

	
LiquidityGaugeReward.claim_rewards(addr: address = msg.sender): nonpayable

	Claim reward tokens for an address. If addr is not specified, defaults to the caller.

LiquidityGaugeV2

The v2 liquidity gauge adds a full ERC20 interface to the gauge, tokenizing deposits so they can be directly transferred between accounts without having to withdraw and redeposit. It also improves flexibility for onward staking, allowing staking to be enabled or disabled at any time and handling up to eight reward tokens at once.

Querying Reward Information

	
LiquidityGaugeV2.reward_contract() → address: view

	The address of the staking rewards [https://github.com/Synthetixio/synthetix/blob/master/contracts/StakingRewards.sol] contract that LP tokens are staked into.

	
LiquidityGaugeV2.rewarded_tokens(idx: uint256) → address: view

	Getter for an array of rewarded tokens currently being received by reward_contract.

The contract is capable of handling up to eight reward tokens at once - if there are less than eight currently active, some values will return as ZERO_ADDRESS.

Approvals and Transfers

	
LiquidityGaugeV2.transfer(_to: address, _value: uint256) → bool:

	Transfers gauge deposit from the caller to _to.

This is the equivalent of calling withdraw(_value) followed by deposit(_value, _to). Pending reward tokens for both the sender and receiver are also claimed during the transfer.

Returns True on success. Reverts on failure.

	
LiquidityGaugeV2.transferFrom(_from: address, _to: address, _value: uint256) → bool:

	Transfers a gauge deposit between _from and _to.

The caller must have previously been approved to transfer at least _value tokens on behalf of _from. Pending reward tokens for both the sender and receiver are also claimed during the transfer.

Returns True on success. Reverts on failure.

	
LiquidityGaugeV2.approve(_spender: address, _value: uint256) → bool:

	Approve the passed address to transfer the specified amount of tokens on behalf of the caller.

Returns True on success. Reverts on failure.

Checking and Claiming Rewards

Note

Rewards are claimed automatically each time a user deposits or withdraws from the gauge, and on gauge token transfers.

	
LiquidityGaugeV2.claimable_reward(_addr: address, _token: address) → uint256: nonpayable

	Get the number of claimable reward tokens for a user.

Note

This function determines the claimable reward by actually claiming and then returning the received amount. As such, it is state changing and only of use to off-chain integrators. The mutability [https://vyper.readthedocs.io/en/stable/control-structures.html#mutability] should be manually changed to view within the ABI.

	_addr Account to get reward amount for

	_token Token to get reward amount for

Returns the number of tokens currently claimable for the given address.

	
LiquidityGaugeV2.claim_rewards(_addr: address = msg.sender): nonpayable

	Claim all available reward tokens for _addr. If no address is given, defaults to the caller.

	
LiquidityGaugeV2.claim_historic_rewards(_reward_tokens: address[8], _addr: address = msg.sender): nonpayable

	Claim reward tokens available from a previously-set staking contract.

	_reward_tokens: Array of reward token addresses to claim

	_addr: Address to claim for. If none is given, defaults to the caller.

Setting the Rewards Contract

	
LiquidityGaugeV2.set_rewards(_reward_contract: address, _sigs: bytes32, _reward_tokens: address[8]): nonpayable

	Set the active reward contract.

	_reward_contract: Address of the staking contract. Set to ZERO_ADDRESS if staking rewards are being removed.

	_sigs: A concatenation of three four-byte function signatures: stake, withdraw and getReward. The signatures are then right padded with empty bytes. See the example below for more information on how to prepare this data.

	_reward_tokens: Array of rewards tokens received from the staking contract.

This action is only possible via the contract admin. It cannot be called when the gauge has no deposits. As a safety precaution, this call validates all the signatures with the following sequence of actions:

	LP tokens are deposited into the new staking contract, verifying that the deposit signature is correct.

	balanceOf is called on the LP token to confirm that the gauge’s token balance is now zero.

	The LP tokens are withdrawn, verifying that the withdraw function signature is correct.

	balanceOf is called on the LP token again, to confirm that the gauge has successfully withdrawn it’s entire balance.

	A call to claim rewards is made to confirm that it does not revert.

These checks are required to protect against an incorrectly designed staking contract or incorrectly structured input arguments.

It is also possible to claim from a reward contract that does not require onward staking. In this case, use 00000000 for the function selectors for both staking and withdrawing.

An example of generating the signatures input and enabling a vanilla SNX rewards contract:

>>> Rewards = Contract("0x99ac10631f69c753ddb595d074422a0922d9056b")

first, we get the signatures for depositing, withdrawing and claiming
>>> sigs = [rewards.stake.signature, rewards.withdraw.signature, rewards.getReward.signature]
>>> sigs
["0xa694fc3a", "0x2e1a7d4d", "0x3d18b912"]

now we remove the leading 0x and concatentate them
>>> sigs = "".join(i[2:] for i in sigs)
>>> sigs
"a694fc3a2e1a7d4d3d18b912"

finally, we add the leading 0x and trailing 00 bytes
>>> sigs = "0x" + sigs + ("00" * 20)
>>> sigs
"0xa694fc3a2e1a7d4d3d18b91200"

now we are ready to set the rewards contract
>>> gauge.set_rewards(rewards, sigs, [reward_token] + [ZERO_ADDRESS] * 7, {'from': alice})

LiquidityGaugeV3

LiquidityGaugeV3 is the current iteration of liquidity gauge used for curve pools on Ethereum mainnet. It retains a majority of LiquidityGaugeV2’s functionality such as tokenized deposits, and flexible onward staking with up to 8 reward tokens with some modifications.

Outline of modified functionality:

	Ability to redirect claimed rewards to an alternative account.

	Opt-in claiming of rewards on interactions with the gauge, instead of auto-claiming.

	Retrieving rewards from the reward contract happens at a minimum of once an hour, for reduced gas costs.

	Expose the amount of claimed and claimable rewards for users.

	Removal of claim_historic_rewards function.

	Modify claimable_reward to be a slightly less accurate view function.

	Reward tokens can no longer be removed once set, adding more tokens requires providing the array of reward_tokens with any new tokens appended.

	deposit(_value, _to) and withdraw(_value, _to) functions have an additional optional argument _claim_rewards, which when set to True will claim any pending rewards.

As this gauge maintains a similar API to LiquidityGaugeV2, the documentation only covers functions that were added or modified since the previous version.

Querying Reward Information

	
LiquidityGaugeV3.rewards_receiver(addr: address) → address: view

	This gauge implementation allows for the redirection of claimed rewards to alternative accounts. If an account has enabled a default rewards receiver this function will return that default account, otherwise it’ll return ZERO_ADDRESS.

	
LiquidityGaugeV3.last_claim() → uint256: view

	The epoch timestamp of the last call to claim from reward_contract.

Checking and Claiming Rewards

Note

Unlike LiquidityGaugeV2, rewards are not automatically claimed each time a user performs an action on the gauge.

	
LiquidityGaugeV3.claim_rewards(_addr: address = msg.sender, _receiver: address = ZERO_ADDRESS): nonpayable

	Claim all available reward tokens for _addr. If no address is given, defaults to the caller. If the _receiver argument is provided rewards will be distributed to the address specified (caller must be _addr in this case). If the _receiver argument is not provided, rewards are sent to the default receiver for the account if one is set.

	
LiquidityGaugeV3.claimed_reward(_addr: address, _token: address) → uint256: view

	Get the number of already claimed reward tokens for a user.

	
LiquidityGaugeV3.claimable_reward(_addr: address, _token: address) → uint256: view

	Get the number of claimable reward tokens for a user

Note

This call does not consider pending claimable amount in reward_contract. Off-chain callers should instead use claimable_reward_write as a view method.

	
LiquidityGaugeV3.claimable_reward_write(_addr: address, _token: address) → uint256: nonpayable

	Get the number of claimable reward tokens for a user. This function should be manually changed to “view” in the ABI. Calling it via a transaction will checkpoint a user’s rewards updating the value of claimable_reward. This function does not claim/distribute pending rewards for a user.

GaugeController

GaugeController is deployed to the Ethereum mainnet at:

0x2F50D538606Fa9EDD2B11E2446BEb18C9D5846bB [https://etherscan.io/address/0x2F50D538606Fa9EDD2B11E2446BEb18C9D5846bB].

This is a fixed address, the contract cannot be swapped out or upgraded.

Source code for this contract is available on Github [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/GaugeController.vy].

Querying Gauge and Type Weights

	
GaugeController.gauge_types(gauge_addr: address) → int128: view

	The gauge type for a given address, as an integer.

Reverts if gauge_addr is not a gauge.

	
GaugeController.get_gauge_weight(gauge_addr: address) → uint256: view

	The current gauge weight for gauge_addr.

	
GaugeController.get_type_weight(type_id: int128) → uint256: view

	The current type weight for type_id as an integer normalized to 1e18.

	
GaugeController.get_total_weight() → uint256: view

	The current total (type-weighted) weight for all gauges.

	
GaugeController.get_weights_sum_per_type(type_id: int128) → uint256: view

	The sum of all gauge weights for type_id.

Vote-Weighting

Vote weight power is expressed as an integer in bps (units of 0.01%). 10000 is equivalent to a 100% vote weight.

	
GaugeController.vote_user_power(user: address) → uint256: view

	The total vote weight power allocated by user.

	
GaugeController.last_user_vote(user: address, gauge: address) → uint256: view

	Epoch time of the last vote by user for gauge. A gauge weight vote may only be modified once every 10 days.

	
GaugeController.vote_user_slopes(user: address, gauge: address)

	Information about user’s current vote weight for gauge.

Returns the current slope, allocated voting power, and the veCRV locktime end.

>>> slope = gauge_controller.vote_user_slopes(alice, gauge)

>>> slope['power'] # the current vote weight for this gauge
4200

	
GaugeController.vote_for_gauge_weights(_gauge_addr: address, _user_weight: uint256): nonpayable

	Allocate voting power for changing pool weights.

	_gauge_addr Gauge which msg.sender votes for

	_user_weight Weight for a gauge in bps (units of 0.01%). Minimal is 0.01%. Ignored if 0

>>> gauge_controller = Contract("0x2F50D538606Fa9EDD2B11E2446BEb18C9D5846bB")

>>> gauge_controller.vote_for_gauge_weights(my_favorite_gauge, 10000, {'from': alice})
Transaction sent: 0xc185d9194bd3c2faa791801ccc57ad4edcfcaff7b5dab1c9101b78cf978a8d7f
 Gas price: 20.0 gwei Gas limit: 47442 Nonce: 26

Adding New Gauges and Types

All of the following methods are only be callable by the DAO ownership admin as the result of a successful vote.

	
GaugeController.add_gauge(addr: address, gauge_type: int128): nonpayable

	Add a new gauge.

	addr: Address of the new gauge being added

	gauge_type: Gauge type

Note

Once a gauge has been added it cannot be removed. New gauges should be very carefully verified prior to adding them to the gauge controller.

	
GaugeController.gauge_relative_weight(addr: address, time: uint256 = block.timestamp) → uint256: view

	Get the relative the weight of a gauge normalized to 1e18 (e.g. 1.0 == 1e18).

Inflation which will be received by this gauge is calculated as inflation_rate * relative_weight / 1e18.
* addr: Gauge address
* time: Epoch time to return a gauge weight for. If not given, defaults to the current block time.

	
GaugeController.add_type(_name: String[64], weight: uint256 = 0): nonpayable

	Add a new gauge type.

	_name: Name of gauge type

	weight: Weight of gauge type

	
GaugeController.change_type_weight(type_id: int128, weight: uint256)

	Change the weight for a given gauge type.

Only callable by the DAO ownership admin.

	type_id Gauge type id

	weight New Gauge weight

Minter

Minter is deployed to the Ethereum mainnet at:

0xd061D61a4d941c39E5453435B6345Dc261C2fcE0 [https://etherscan.io/address/0xd061D61a4d941c39E5453435B6345Dc261C2fcE0].

This is a fixed address, the contract cannot be swapped out or upgraded.

Source code for this contract is available on Github [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/Minter.vy].

Minting CRV

	
Minter.mint(gauge_addr: address): nonpayable

	Mint allocated tokens for the caller based on a single gauge.

	gauge_addr: LiquidityGauge address to get mintable amount from

	
Minter.mint_many(gauge_addrs: address[8]): nonpayable

	Mint CRV for the caller from several gauges.

	gauge_addr: A list of LiquidityGauge addresses to mint from. If you wish to mint from less than eight gauges, leave the remaining array entries as ZERO_ADDRESS.

	
Minter.mint_for(gauge_addr: address, for: address): nonpayable

	Mint tokens for a different address.

In order to call this function, the caller must have been previously approved by for using toggle_approve_mint.

	gauge_addr: LiquidityGauge address to get mintable amount from

	for: address to mint for. The minted tokens are sent to this address, not the caller.

	
Minter.toggle_approve_mint(minting_user: address): nonpayable

	Toggle approval for minting_user to mint CRV on behalf of the caller.

	
Minter.allowed_to_mint_for(minter: address, for: address) → bool: view

	Getter method to check if minter has been approved to call mint_for on behalf of for.

The Curve DAO: Gauges for EVM Sidechains

In addition to Ethereum, Curve is active on several sidechains [https://docs.ethhub.io/ethereum-roadmap/layer-2-scaling/sidechains/].

The Curve DAO is sufficiently complex that it cannot be easily bridged outside of Ethereum, however aspects of functionality (including CRV emissions) are capable on the various sidechains where pools are active.

Source code for the smart contracts used in sidechain emissions are available on Github [https://github.com/curvefi/curve-dao-contracts/tree/master/contracts/gauges/sidechain].

Note

Each sidechain comes with it’s own set of tradeoffs between security, scalability and cost of use. The technical specifications and security considerations of each sidechain is outside the scope of this documentation, however we encourage all users to do their own research prior to transferring funds off of Ethereum and onto a sidechain.

Implementation Details

At a high level, the process of CRV distribution on sidechain gauges is as follows:

	On Ethereum, a RootChainGauge contract mints allocated CRV each week and transfers it over the bridge.

At the beginning of each epoch week, a call is made to the checkpoint function within each gauge. This function mints all of the allocated CRV for the previous week, and transfers them over the bridge to another contract deployed at the same address on the related sidechain. Emissions are delayed by one week in order to avoid exceeding the max allowable supply of CRV.

Checkpointing may be performed by anyone. However, for chains that use the AnySwap bridge [https://anyswap.exchange/bridge] the checkpoint must happen via the CheckpointProxy contract.

	On the sidechain, CRV is received into a ChildChainStreamer contract and then streamed out to a RewardsOnlyGauge.

The bridge automatically transfers CRV into a streamer contract, deployed at the same address on the sidechain as the gauge is on Ethereum. Once the CRV has arrived, a call is made to notify_reward_amount. This call updates the local accounting and streams the balance out linearly over the next seven days.

	Liquidity providers who have staked their LP tokens in the RewardsOnlyGauge may claim their CRV.

The sidechain gauge is a simplified version of the gauges used on Ethereum. It handles CRV as though it were any other 3rd-party reward token, evenly distributing between stakers based on the deposited balances as the time the token is received.

RootChainGauge

RootChainGauge is a simplified liquidity gauge contract used for bridging CRV from Ethereum to a sidechain. Each root gauge is added to the gauge controller and receives gauge weight votes to determine emissions for a sidechain pool.

The gauge cannot be directly staked into. There is one important external function:

	
RootChainGauge.checkpoint(): nonpayable

	Mints all allocated CRV emissions for the gauge, and transfers across the bridge.

This function should be called once per week, immediately after the start of the epoch week. Subsequent calls within the same epoch week have no effect.

For gauges that use the AnySwap bridge, this function is guarded and can only be called indirectly via CheckpointProxy.checkpoint_many.

ChildChainStreamer

ChildChainStreamer is a simple reward streaming contract. The logic is similar to that of the Synthetix staking rewards contract [https://github.com/Synthetixio/synthetix/blob/master/contracts/StakingRewards.sol].

For each RootChainGauge deployed on Ethereum, a ChildChainStreamer is deployed at the same address on the related sidechain. CRV tokens that are sent over the bridge are transferred into the streamer. From there they are released linearly over seven days, to the gauge where LPs ultimately stake and claim them.

	
ChildChainStreamer.notify_reward_amount(token: address):

	Notify the contract of a newly received reward. This updates the local accounting and streams the reward over a preset period (typically seven days).

If the previous reward period has already expired, this function is callable by anyone. When there is an active reward period it may only be called by the designated reward distributor account. Without this check, it would be possible to exploit the system by repeatedly calling to extend an active reward period and thus dragging out the duration over which the rewards are released.

Reverts if token is not registered as a reward within the contract, or if no extra balance of token was added prior to the call.

RewardsOnlyGauge

RewardsOnlyGauge is a simplified version of the same gauge contract used on Ethereum. The logic around CRV emissions and minting has been removed - it only deals with distribution of externally received rewards.

The API for this contract is similar to that of LiquidityGaugeV3.

RewardClaimer

RewardClaimer is a minimal passthrough contract that allows claiming from multiple reward streamers. For example the am3CRV pool on Polygon utilizes this contract to receive both CRV emissions bridged across from Ethereum, as well as WMATIC rewards supplied via a RewardStreamer contract. The RewardsOnlyGauge calls the RewardClaimer as a way to retrieve both the CRV and WMATIC rewards.

Curve DAO: Fee Collection and Distribution

Curve exchange contracts have the capability to charge an “admin fee”, claimable by the contract owner. The admin fee is represented as a percentage of the total fee collected on a swap.

For exchanges the fee is taken in the output currency and calculated against the final amount received. For example, if swapping from USDT to USDC, the fee is taken in USDC.

Liquidity providers also incur fees when adding or removing liquidity. The fee is applied such that, for example, a swap between USDC and USDT would pay roughly the same amount of fees as depositing USDC into the pool and then withdrawing USDT. The only case where a fee is not applied on withdrawal is when removing liquidity via remove_liquidity, as this method does not change the imbalance of the pool in any way.

Exchange contracts are indirectly owned by the Curve DAO via a proxy ownership contract. This contract includes functionality to withdraw the fees, convert them to 3CRV [https://etherscan.io/token/0x6c3F90f043a72FA612cbac8115EE7e52BDe6E490], and forward them into the fee distributor contract. Collectively, this process is referred to as “burning”.

Note

The burn process involves multiple transactions and is very gas intensive. Anyone can execute any step of the burn process at any time and there is no hard requirement that it happens in the correct order. However, running the steps out of order can be highly inefficient. If you wish to burn, it is recommended that you review all of the following information so you understand exactly what is happening.

Withdrawing Admin Fees

Admin fees are stored within each exchange contract and viewable via the admin_balances public getter method. The contract owner may call to claim the fees at any time using withdraw_admin_fees. Most pools also include a function to donate pending fees to liquidity providers via donate_admin_fees.

Fees are initially claimed via PoolProxy.withdraw_many. This withdraws fees from many pools at once, pulling them into the PoolProxy contract.

The Burn Process

Burning is handled on a per-coin basis. The process is initiated by calling the PoolProxy.burn or PoolProxy.burn_many functions. Calling to burn a coin transfers that coin into the burner and then calls the burn function on the burner.

Each burn action typically performs one conversion into another asset; either 3CRV itself, or something that is a step closer to reaching 3CRV. As an example, here is the sequence of conversions required to burn HBTC:

HBTC -> WBTC -> sBTC -> sUSD -> USDC -> 3CRV

Efficiency within the intermediate conversions is the reason it is important to run the burn process in a specific order. If you burn sBTC prior to burning HBTC, you will have to burn sBTC a second time!

There are a total of nine burner contracts, each of which handles a different category of fee coin. The following list also outlines the rough sequence in which burners should be executed:

	LPBurner: LP tokens in non-3CRV denominated metapools

	SynthBurner: non-USD denominated assets that are synths or can be swapped into synths

	ABurner: Aave lending tokens

	CBurner: Compound lending tokens

	YBurner: Yearn lending tokens

	MetaBurner: USD denominated assets that are directly swappable for 3CRV

	USDNBurner: USDN

	UniswapBurner: Assets that must be swapped on Uniswap/Sushiswap

	UnderlyingBurner: Assets that can be directly deposited into 3pool, or swapped for an asset that is deposited into 3pool

Source code for burners is available on Github [https://github.com/curvefi/curve-dao-contracts/tree/master/contracts/burners].

LPBurner

The LP Burner handles non-3CRV LP tokens, collected from metapools. The most common token burned via the LP burner is sbtcCRV [https://etherscan.io/address/0x075b1bb99792c9E1041bA13afEf80C91a1e70fB3] from BTC metapools.

LP burner calls to StableSwap.remove_liquidity_one_coin to unwrap the LP token into a single asset. The new asset is then transferred on to another burner.

The burner is configurable via the following functions:

	
LPBurner.set_swap_data(lp_token: address, coin: address, burner: address) → bool: nonpayable

	Set conversion and transfer data for lp_token

	lp_token: LP token address

	coin: Address of the underlying coin to remove liquidity in

	burner: Burner to transfer coin to

This function is callable by the ownership admin and so requires a successful DAO vote.

Returns True.

SynthBurner

The synth burner is used to convert non-USD denominated assets into sUSD. This is accomplished via synth conversion, the same mechanism used in cross-asset swaps.

When the synth burner is called to burn a non-synthetic asset, it uses RegistrySwap.exchange_with_best_rate to swap into a related synth. If no direct path to a synth is avaialble, a swap is made into an intermediate asset.

For synths, the burner first transfers to the underlying burner. Then it calls UnderlyingBurner.convert_synth, performing the cross-asset swap within the underlying burner. This is done to avoid requiring another transfer call after the settlement period [https://docs.synthetix.io/integrations/settlement/] has passed.

The optimal sequence when burning assets using the synth burner is thus:

	Coins that cannot directly swap to synths

	Coins that can directly swap to synths

	Synthetic assets

The burner is configurable via the following functions:

	
SynthBurner.set_swap_for(_coins: address[10], _targets: address[10]) → bool:

	Set target coins that the burner will swap into.

	coins: Array of coin addresses that will be burnt. If you wish to set less than 10, fill the remaining array slots with ZERO_ADDRESS.

	targets: Array of coin addresses to be swapped into. The address as index n within this list corresponds to the address at index n within coins.

For assets that can be directly swapped for a synth, the target should be set as that synth. For assets that cannot be directly swapped, the target must be an asset that has already had it’s own target registered (e.g. can be swapped for a synth).

This function is unguarded. All targets are validated using the registry.

Returns True.

	
SynthBurner.add_synths(_synths: address[10]) → bool:

	Register synthetic assets within the burner.

	synths: List of synths to register

This function is unguarded. For each synth to be added, a call is made to Synth.currencyKey [https://docs.synthetix.io/contracts/source/contracts/Synth/#currencykey] to validate the addresss and obtain the synth currency key.

Returns True.

ABurner, CBurner, YBurner

ABurner, CBurner and YBurner are collectively known as “lending burners”. They unwrap lending tokens into the underlying asset and transfer those assets onward into the underlying burner.

There is no configuration required for these burners.

MetaBurner

The meta-burner is used for assets within metapools that can be directly swapped for 3CRV. It uses the registry’s exchange_with_best_rate and transfers 3CRV directly to the fee distributor.

There is no configuration required for this burner.

USDNBurner

The USDN burner is a special case that handles only USDN. Due to incompatibilities between the USDN pool and how USDN accrues interest, this burner is required to ensure the LPs recieve a fair share of that interest.

The burn process consists of:

	50% of the USDN to be burned is transferred back into the pool.

	The burner calls to donate_admin_fees, creditting the returned USDN to LPs

	The remaining USDN is swapped for 3CRV and transferred directly to the fee distributor.

There is no configuration required for this burner.

UniswapBurner

UniswapBurner is used for burning assets that are not supported by Curve, such as SNX recieved by the DAO via the Synthetix trading incentives [https://sips.synthetix.io/sips/sip-63] program.

The burner works by querying swap rates on both Uniswap and Sushiswap using a path of initial asset -> wETH -> USDC. It then performs the swap on whichever exchange offers a better rate. The received USDC is sent into the underlying burner.

There is no configuration required for this burner.

UnderlyingBurner

The underlying burner handles assets that can be directly swapped to USDC, and deposits DAI/USDC/USDT into 3pool [https://www.curve.fi/3pool] to obtain 3CRV. This is the final step of the burn process for many assets that require multiple intermediate swaps.

Note

Prior to burning any assets with the underlying burner, you shoudl have completed the entire process with SynthBurner, UniswapBurner and all of the lending burners.

The burn process consists of:

	For sUSD, first call settle [https://docs.synthetix.io/contracts/source/contracts/Synthetix/#settle] to complete any pending synth conversions. Then, swap into USDC.

	for all other assets that are not DAI/USDC/USDT, swap into USDC.

	For DAI/USDC/USDT, only transfer the asset into the burner.

Once the entire burn process has been completed you must call execute as the final action:

	
UnderlyingBurner.execute() → bool:

	Adds liquidity to 3pool and transfers the received 3CRV to the fee distributor.

This is the final function to be called in the burn process, after all other steps are completed. Calling this funciton does nothing if the burner has a zero balance of any of DAI, USDC and USDT.

There is no configuration required for this burner.

Fee Distribution

Fees are distributed to veCRV holders via the FeeDistributor contract. The contract is deployed to the Ethereum mainnet at:

0xA464e6DCda8AC41e03616F95f4BC98a13b8922Dc [https://etherscan.io/address/0xa464e6dcda8ac41e03616f95f4bc98a13b8922dc]

Source code for this contract is available on Github [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/FeeDistributor.vy].

Fees are distributed weekly. The porportional amount of fees that each user is to receive is calculated based on their veCRV balance relative to the total veCRV supply. This amount is calculated at the start of the week. The actual distribution occurs at the end of the week based on the fees that were collected. As such, a user that creates a new vote-lock should expect to receive their first fee payout at the end of the following epoch week.

The available 3CRV balance to distribute is tracked via the “token checkpoint”. This is updated at minimum every 24 hours. Fees that are received between the last checkpoint of the previous week and first checkpoint of the new week will be split evenly between the weeks.

	
FeeDistributor.checkpoint_token(): nonpayable

	Updates the token checkpoint.

The token checkpoint tracks the balance of 3CRV within the distributor, to determine the amount of fees to distribute in the given week. The checkpoint can be updated at most once every 24 hours. Fees that are received between the last checkpoint of the previous week and first checkpoint of the new week will be split evenly between the weeks.

To ensure full distribution of fees in the current week, the burn process must be completed prior to the last checkpoint within the week.

A token checkpoint is automatically taken during any claim action, if the last checkpoint is more than 24 hours old.

	
FeeDistributor.claim(addr: address = msg.sender) → uint256: nonpayable

	Claims fees for an account.

	addr: The address to claim for. If none is given, defaults to the caller.

Returns the amount of 3CRV received in the claim. For off-chain integrators, this function can be called as though it were a view method in order to check the claimable amount.

Note

Every veCRV related action (locking, extending a lock, increasing the locktime) increments a user’s veCRV epoch. A call to claim will consider at most 50 user epochs. For accounts that performed many veCRV actions, it may be required to call claim more than once to receive the fees. In such cases it can be more efficient to use claim_many.

>>> distro = Contract("0xA464e6DCda8AC41e03616F95f4BC98a13b8922Dc")
>>> distro.claim.call({'from': alice})
1323125068357710082803

>>> distro.claim({'from': alice})
Transaction sent: 0xa7978a8d7fb185d9194bd3c2fa1801ddd57ad4edcfcaff7b5dab1c9101b78cf9
 Gas price: 92.0 gwei Gas limit: 256299 Nonce: 42

	
FeeDistributor.claim_many(receivers: address[20]) → bool: nonpayable

	Perform multiple claims in a single call.

	receivers: An array of address to claim for. Claiming terminates at the first ZERO_ADDRESS.

This is useful to claim for multiple accounts at once, or for making many claims against the same account if that account has performed more than 50 veCRV related actions.

Returns True.

The Curve DAO: Governance and Voting

Curve uses Aragon [https://aragon.org/] for governance and control of the protocol admin functionality. Interaction with Aragon occurs through a modified implementation [https://github.com/curvefi/curve-aragon-voting] of the Aragon Voting App [https://github.com/aragon/aragon-apps/tree/master/apps/voting].

Much of the following functionality is possible via the DAO section [https://dao.curve.fi/dao] of the Curve website. The following section outlines DAO interactions via the CLI using the Brownie console [https://eth-brownie.readthedocs.io/en/stable/interaction.html#using-the-console].

Deployment addresses can be found in the addresses reference section of the documentation.

Creating a Vote

A single vote can perform multiple actions. The new_vote.py [https://github.com/curvefi/curve-dao-contracts/blob/master/scripts/voting/new_vote.py] script in the DAO repo is used to create new votes.

	Modify the TARGET, ACTIONS and DESCRPTION variables at the beginning of the script. The comments within the script explain how each of these variables work.

	Simulate the vote in a forked mainnet:

brownie run voting/new_vote simulate --network mainnet-fork

The simulation creates the vote, votes for it until quorum is reached, and then executes. The vote was successful if none of the transactions within the simulation fail. You can optionally include the -I flag to inspect the result of the vote once the simulation completes.

	Create the vote:

	Modify the SENDER variable to use an account that is permitted to make a vote for the DAO you are targetting.

	Create the vote with the following command:

brownie run voting/new_vote make_vote --network mainnet

	The vote should automatically appear within the site UX shortly.

Inspecting Votes

The decode_vote.py [https://github.com/curvefi/curve-dao-contracts/blob/master/scripts/voting/new_vote.py] script in the DAO repo is used to decode a vote in order to see which action(s) it will perform.

To use the script, start by modifying the VOTE_ID and VOTING_ADDRESS variables at the start of the script. Then run the following:

brownie run voting/decode_vote --network mainnet

The script will output a list of transactions to be performed by the vote.

Voting

To place a vote via the CLI, first open a Brownie console connected to mainnet. Then use the following commands:

>>> aragon = Contract(VOTING_ADDRESS)
>>> aragon.vote(VOTE_ID, MY_VOTE, False, {'from': acct})
Transaction sent: 0xa791801ccc57ad4edcfcaff7b5dab1c9101b78cf978a8d7fc185d9194bd3c2fa
 Gas price: 20.0 gwei Gas limit: 156299 Nonce: 23

	VOTING_ADDRESS is one of the voting addresses given above

	VOTE_ID is the numeric ID of the vote

	MY_VOTE is a boolean

Executing a Vote

To execute a vote via the CLI, first open a Brownie console connected to mainnet. Then use the following commands:

>>> aragon = Contract(VOTING_ADDRESS)
>>> aragon.executeVote({'from': acct})
Transaction sent: 0x85d9194bd3c2fa1801ccc57ad4edcfa7978a8d7fc1caff7b5dab1c9101b78cf9
 Gas price: 20.0 gwei Gas limit: 424912 Nonce: 24

	VOTING_ADDRESS is one of the voting addresses given above

Curve DAO: Protocol Ownership

The Curve DAO controls admin functionality throughout the protocol. Performing calls to to owner/admin-level functions is only possible via a successful DAO vote.

Ownership is handled via a series of proxy contracts. At a high level, the flow of ownership is:

DAO -> Aragon Agent -> Ownership Proxy -> Contracts

At the ownership proxy level there are two main contracts:

	PoolProxy: Admin functionality for exchange contracts

	GaugeProxy: Admin functionality for liquidity gauges

The DAO is capable of replacing the ownership proxies via a vote. Deployment addresses for the current contracts can be found in the addresses reference section of the documentation.

Agents

The Curve DAO has a total of three Aragon Agent [https://hack.aragon.org/docs/guides-use-agent] ownership addresses, which are governed by two independent DAOs:

	The Community DAO (or just “the DAO”) governs the day-to-day operation of the protocol.

Voting is based on a user’s holdings of “Vote Escrowed CRV” (veCRV). veCRV is obtained by locking CRV for up to 4 years, with 1 veCRV equal to 1 CRV locked for 4 years. As the lock time decreases, An account’s veCRV balance decreases linearly as the time remaining until unlock decreases. veCRV is non-transferrable.

An account must have a minimum balance of 2500 veCRV to make a DAO vote. Each vote lasts for one week. Votes cannot be executed until the entire week has passed.

The DAO has ownership of two admin accounts:

	The ownership admin controls most functionality within the protocol. Performing an action via the ownership admin requires a 30% quorum with 51% support.

	The parameter admin has authority to modify parameters on pools, such as adjusting the amplification co-efficient. Performing an action via the paramater admin requries a 15% quorum with 51% support.

	The Emergency DAO has limited authority to kill pools and gauges during extraordinary circumstances.

The emergency DAO consists of nine members [https://dao.curve.fi/emergencymembers], comprised of a mix of the Curve team and prominent figures within the DeFi community. Each member has one vote. Any member may propose a vote.

All members of the emergency DAO may propose new votes. A vote lasts for 24 hours and can be executed immediately once it receives 66% support.

PoolProxy

PoolProxy is used for indirect ownership of exchange contracts.

Source code for this contract is available on Github [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/PoolProxy.vy].

Configuring Fee Burners

	
PoolProxy.burners(coin: address) → address: view

	Getter for the burner contract address for coin.

	
PoolProxy.set_burner(coin: address, burner: address): nonpayable

	Set burner of coin to burner address.

Callable only by the ownership admin.

	
PoolProxy.set_many_burners(coins: address[20], burners: address[20]): nonpayable

	Set burner contracts for many coins at once.

	coins: Array of coin addresses. If you wish to set less than 20 burners, fill the remaining array slots with ZERO_ADDRESS.

	burners: Array of burner addresses. The address as index n within this list corresponds to the address at index n within coins.

Callable only by the ownership admin.

	
PoolProxy.set_donate_approval(pool: address, caller: address, is_approved: bool): nonpayable

	Set approval for an address to call donate_admin_fees on a specific pool.

	pool: Pool address

	caller: Adddress to set approval for

	is_approved: Approval status

Callable only by the ownership admin.

	
PoolProxy.set_burner_kill(_is_killed: bool): nonpayable

	Disable or enable the process of fee burning.

Callable by the emergency and ownership admins.

Withdraing and Burning Fees

	
PoolProxy.withdraw_admin_fees(pool: address): nonpayable

	Withdraw admin fees from pool into this contract.

This is the first step in fee burning. This function is unguarded - it may be called by any address.

	
PoolProxy.withdraw_many(pools: address[20]): nonpayable

	Withdraw fees from multiple pools in a single call.

This function is unguarded.

	
PoolProxy.burn(coin: address): nonpayable

	Transfer the contract’s balance of coin into the preset burner and execute the burn process.

Only callable via an externally owned account; a check that tx.origin == msg.sender is performed to prevent potential flashloan exploits.

	
PoolProxy.burn_many(coins: address[20]): nonpayable

	Execute the burn process on many coins at once.

Note that burning can be very gas intensive. In some cases burning 20 coins at once is not possible due to the block gas limit.

	
PoolProxy.donate_admin_fees(_pool: address): nonpayable

	Donate a pool’s current admin fees to the pool LPs.

Callable by the ownership admin, or any address given explicit permission to do so via set_donate_approval

Killing Pools

	
PoolProxy.kill_me(_pool: address): nonpayable

	Pauses the pool.

When paused, it is only possible for existing LPs to remove liquidity via remove_liquidity. Exchanges and adding or removing liquidity in other ways are blocked.

Callable only by the emergency admin.

	
PoolProxy.unkill_me(_pool: address): nonpayable

	Unpause a pool that was previously paused, re-enabling exchanges.

Callable by the emergency and ownership admins.

Pool Ownership

	
PoolProxy.commit_transfer_ownership(pool: address, new_owner: address): nonpayable

	Initiate an ownership transfer of pool to new_owner.

Callable only by the ownership admin.

	
PoolProxy.accept_transfer_ownership(pool: address): nonpayable

	Accept ending ownership transfer for pool.

This function is unguarded.

	
PoolProxy.revert_transfer_ownership(pool: address): nonpayable

	Cancel a pending ownership transfer for pool.

Callable by the emergency and ownership admins.

Modifying Pool Parameters

	
PoolProxy.commit_new_parameters(pool: address, amplification: uint256, new_fee: uint256, new_admin_fee: uint256, min_asymmetry: uint256): nonpayable

	Initiate a change of parameters for a pool.

	pool: Pool address

	amplification New Amplification coefficient

	new_fee New fee

	new_admin_fee New admin fee

	min_asymmetry Minimal asymmetry factor allowed.

Asymmetry factor is: Prod(balances) / (Sum(balances) / N) ** N

Callable only by the parameter admin.

	
PoolProxy.apply_new_parameters(_pool: address): nonpayable

	Apply a parameter change on a pool.

This function is unguarded, however it can only be called via an EOA to minimize the likelihood of a flashloan exploit.

	
PoolProxy.revert_new_parameters(_pool: address): nonpayable

	Revert comitted new parameters for pool

Callable by the emergency and ownership admins.

	
PoolProxy.ramp_A(_pool: address, _future_A: uint256, _future_time: uint256): nonpayable

	Start a gradual increase of the amplification coefficient for a pool.

	_pool: Pool address

	future_A: New amplification coefficient to ramp to

	future_time: Epoch time to complete the ramping at

Callable only by the parameter admin.

	
PoolProxy.stop_ramp_A(pool: address): nonpayable

	Stop the gradual ramping of pool’s amplification coefficient.

Callable by the emergency and parameter admins.

	
PoolProxy.commit_new_fee(pool: address, new_fee: uint256, new_admin_fee: uint256):

	Initiate change in the fees for a pool.

	``pool`:` Pool address

	new_fee: New fee

	new_admin_fee: New admin fee

Callable only by the parameter admin.

	
PoolProxy.apply_new_fee(_pool: address): nonpayable

	Apply a fee change to a pool.

This function is unguarded.

GaugeProxy

GaugeProxy is used for indirect ownership of liquidity gauges.

Source code for this contract is available on Github [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/GaugeProxy.vy].

	
GaugeProxy.set_rewards(gauge: address, reward_contract: address, sigs: bytes32, reward_tokens: address[8]): nonpayable

	Set the active reward contract for a LiquidityGaugeV2 deployment.

See the gauge documentation for details on how this function works.

	gauge Gauge address

	reward_contract: Address of the staking contract. Set to ZERO_ADDRESS if staking rewards are being removed.

	sigs: A concatenation of three four-byte function signatures: stake, withdraw and getReward. The signatures are then right padded with empty bytes. See the example below for more information on how to prepare this data.

	reward_tokens: Array of rewards tokens received from the staking contract.

Callable by the ownership admin.

	
GaugeProxy.set_killed(gauge: address, is_killed: bool): nonpayable

	Set the killed status for a gauge.

	gauge Gauge address

	is_killed Killed status to set

Once killed, a gauge always yields a rate of 0 and so cannot mint CRV. Any vote-weight given to a killed gauge effectively burns CRV.

Callable by the ownership admin or the emergency admin.

	
GaugeProxy.commit_transfer_ownership(gauge: address, new_owner: address): nonpayable

	Initiate the transfer of ownership of a gauge.

	gauge: Address of the gauge to transfer ownership of

	new_owner: New owner address

Callable only by the ownership admin.

	
GaugeProxy.accept_transfer_ownership(gauge: address): nonpayable

	Apply ownership transfer of a gauge.

This function is unguarded. After commit_transfer_ownership has been called by the current owner, anyone can call into GaugeProxy to trigger the acceptance.

Registry

The Curve registry contracts are open source and may be found on Github [https://github.com/curvefi/curve-pool-registry].

The registry is comprised of the following contracts:

	AddressProvider: Address provider for registry contracts. This contract is immutable and it’s address will never change. On-chain integrators should always use this contract to fetch the current address of other registry components.

	Registry: The main registry contract. Used to locate pools and query information about them as well as registered coins.

	PoolInfo: Aggregate getter methods for querying large data sets about a single pool. Designed for off-chain use.

	Swaps: The registry exchange contract. Used to find pools and query exchange rates for token swaps. Also provides a unified exchange API that can be useful for on-chain integrators.

Registry: Address Provider

AddressProvider is an address provider for registry contracts.

Source code for this contract is available on Github [https://github.com/curvefi/curve-pool-registry/blob/master/contracts/AddressProvider.vy].

How it Works

The address provider is deployed to the same address on Ethereum and all sidechains/L2’s where Curve is active. The deployment address is:

0x0000000022D53366457F9d5E68Ec105046FC4383 [https://etherscan.io/address/0x0000000022d53366457f9d5e68ec105046fc4383]

This contract is immutable. The address will never change.

The address provider is the point-of-entry for on-chain integrators. All other contracts within the registry are assigned an ID within the address provider. IDs start from zero and increment as new components are added. The address associated with an ID may change, but the API of the associated contract will not.

Integrators requiring an aspect of the registry should always start by querying the address provider for the current address of the desired component. An up-to-date list of registered IDs is available here.

To interact with the address provider using the Brownie console:

$ brownie console --network mainnet
Brownie v1.11.10 - Python development framework for Ethereum

Brownie environment is ready.
>>> provider = Contract.from_explorer('0x0000000022D53366457F9d5E68Ec105046FC4383')
Fetching source of 0x0000000022D53366457F9d5E68Ec105046FC4383 from api.etherscan.io...

>>> provider
<AddressProvider Contract '0x0000000022D53366457F9d5E68Ec105046FC4383'>

View Functions

	
AddressProvider.get_registry() → address: view

	Get the address of the main registry contract.

This is a more gas-efficient equivalent to calling get_address(0).

>>> provider.get_registry()
'0x90E00ACe148ca3b23Ac1bC8C240C2a7Dd9c2d7f5'

	
AddressProvider.get_address(id: uint256) → address: view

	Fetch the address associated with id.

>>> provider.get_address(1)
'0xe64608E223433E8a03a1DaaeFD8Cb638C14B552C'

	
AddressProvider.get_id_info(id: uint256) → address, bool, uint256, uint256, string: view

	Fetch information about the given id.

Returns a tuple of the following:

	address: Address associated to the ID.

	bool: Is the address at this ID currently set?

	uint256: Version of the current ID. Each time the address is modified, this number increments.

	uint256: Epoch timestamp this ID was last modified.

	string: Human-readable description of the ID.

>>> provider.get_id_info(1).dict()
{
 'addr': "0xe64608E223433E8a03a1DaaeFD8Cb638C14B552C",
 'description': "PoolInfo Getters",
 'is_active': True,
 'last_modified': 1604019085,
 'version': 1
}

	
AddressProvider.max_id() → uint256: view

	Get the highest ID set within the address provider.

>>> provider.max_id()
1

Address IDs

Note that not all contracts are available on all sidechains.

	0: The main registry contract. Used to locate pools and query information about them.

	1: Aggregate getter methods for querying large data sets about a single pool. Designed for off-chain use.

	2: Generalized swap contract. Used for finding rates and performing exchanges.

	3: The metapool factory.

	4: The fee distributor. Used to distribute collected fees to veCRV holders.

	5: The cryptoswap registry contract. Used to locate and query information about pools for uncorrelated assets.

	6: The cryptoswap factory.

Registry

Registry is the main registry contract. It is used to locate pools and query information about them.

Source code for this contract is available on Github [https://github.com/curvefi/curve-pool-registry/blob/master/contracts/Registry.vy].

Deployment Address

Use the get_registry method to get the address of the main registry from the address provider:

>>> provider = Contract('0x0000000022D53366457F9d5E68Ec105046FC4383')
>>> provider.get_registry()
'0x90E00ACe148ca3b23Ac1bC8C240C2a7Dd9c2d7f5'

View Functions

Because Vyper does not support dynamic-length arrays, all arrays have a fixed length. Excess fields contain zero values.

Finding Pools

	
Registry.pool_count() → uint256: view

	The number of pools currently registered within the contract.

>>> registry.pool_count()
18

	
Registry.pool_list(i: uint256) → address: view

	Master list of registered pool addresses.

Note that the ordering of this list is not fixed. Index values of addresses may change as pools are added or removed.

Querying values greater than Registry.pool_count returns 0x00.

>>> registry.pool_list(7)
'0x8474DdbE98F5aA3179B3B3F5942D724aFcdec9f6'

	
Registry.get_pool_from_lp_token(lp_token: address) → address: view

	Get the pool address for a given Curve LP token.

>>> registry.get_pool_from_lp_token('0x1AEf73d49Dedc4b1778d0706583995958Dc862e6')
'0x8474DdbE98F5aA3179B3B3F5942D724aFcdec9f6'

	
Registry.get_lp_token(pool: address) → address: view

	Get the LP token address for a given Curve pool.

>>> registry.get_lp_token('0x8474DdbE98F5aA3179B3B3F5942D724aFcdec9f6')
'0x1AEf73d49Dedc4b1778d0706583995958Dc862e6'

	
Registry.find_pool_for_coins(_from: address, _to: address, i: uint256 = 0) → address: view

	Finds a pool that allows for swaps between _from and _to. You can optionally include i to get the n-th pool, when multiple pools exist for the given pairing.

The order of _from and _to does not affect the result.

Returns 0x00 when swaps are not possible for the pair or i exceeds the number of available pools.

>>> registry.find_pool_for_coins('0x6b175474e89094c44da98b954eedeac495271d0f', '0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48')
'0xbEbc44782C7dB0a1A60Cb6fe97d0b483032FF1C7'

>>> registry.find_pool_for_coins('0x6b175474e89094c44da98b954eedeac495271d0f', '0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48', 1)
'0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27'

Getting Info About a Pool

Coins and Coin Info

	
Registry.get_n_coins(pool: address) → uint256[2]: view

	Get the number of coins and underlying coins within a pool.

>>> registry.get_n_coins('0x8474DdbE98F5aA3179B3B3F5942D724aFcdec9f6')
(2, 4)

	
Registry.get_coins(pool: address) → address[8]: view

	Get a list of the swappable coins within a pool.

>>> registry.get_coins('0x8474DdbE98F5aA3179B3B3F5942D724aFcdec9f6')
("0xe2f2a5C287993345a840Db3B0845fbC70f5935a5", "0x6c3F90f043a72FA612cbac8115EE7e52BDe6E490", "0x00", "0x00", "0x00", "0x00", "0x00", "0x00")

	
Registry.get_underlying_coins(pool: address) → address[8]: view

	Get a list of the swappable underlying coins within a pool.

For pools that do not involve lending, the return value is identical to Registry.get_coins.

>>> registry.get_underlying_coins('0x8474DdbE98F5aA3179B3B3F5942D724aFcdec9f6')
("0xe2f2a5C287993345a840Db3B0845fbC70f5935a5", "0x6B175474E89094C44Da98b954EedeAC495271d0F", "0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48", "0xdAC17F958D2ee523a2206206994597C13D831ec7", "0x00", "0x00", "0x00", "0x00")

	
Registry.get_decimals(pool: address) → uint256[8]: view

	Get a list of decimal places for each coin within a pool.

>>> registry.get_decimals('0x8474DdbE98F5aA3179B3B3F5942D724aFcdec9f6')
(18, 18, 0, 0, 0, 0, 0, 0)

	
Registry.get_underlying_decimals(pool: address) → uint256[8]: view

	Get a list of decimal places for each underlying coin within a pool.

For pools that do not involve lending, the return value is identical to Registry.get_decimals. Non-lending coins that still involve querying a rate (e.g. renBTC) are marked as having 0 decimals.

>>> registry.get_underlying_decimals('0x8474DdbE98F5aA3179B3B3F5942D724aFcdec9f6')
(18, 18, 6, 6, 0, 0, 0, 0)

	
Registry.get_coin_indices(pool: address, _from: address, _to: address) → (int128, int128, bool): view

	Convert coin addresses into indices for use with pool methods.

Returns the index of _from, index of _to, and a boolean indicating if the coins are considered underlying in the given pool.

>>> registry.get_coin_indices('0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27', '0xdac17f958d2ee523a2206206994597c13d831ec7', '0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48')
(2, 1, True)

Based on the above call, we know:

	the index of the coin we are swapping out of is 2

	the index of the coin we are swapping into is 1

	the coins are considred underlying, so we must call exchange_underlying

From this information we can perform a token swap:

>>> swap = Contract('0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27')
>>> swap.exchange_underlying(2, 1, 1e18, 0, {'from': alice})

Balances and Rates

	
Registry.get_balances(pool: address) → uint256[8]: view

	Get available balances for each coin within a pool.

These values are not necessarily the same as calling Token.balanceOf(pool) as the total balance also includes unclaimed admin fees.

>>> registry.get_balances('0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27')
(11428161394428689823275227, 47831326741306, 45418708932136, 48777578907442492245548483, 0, 0, 0, 0)

	
Registry.get_underlying_balances(pool: address) → uint256[8]: view

	Get balances for each underlying coin within a pool.

For pools that do not involve lending, the return value is identical to Registry.get_balances.

>>> registry.get_underlying_balances('0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27')
(11876658145799734093379928, 48715210997790596223520238, 46553896776332824101242804, 49543896565857325657915396, 0, 0, 0, 0)

	
Registry.get_admin_balances(pool: address) → uint256[8]: view

	Get the current admin balances (uncollected fees) for a pool.

>>> registry.get_admin_balances('0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27')
(10800690926373756722358, 30891687335, 22800662409, 16642955874751891466129, 0, 0, 0, 0)

	
Registry.get_rates(pool: address) → uint256[8]: view

	Get the exchange rates between coins and underlying coins within a pool, normalized to a 1e18 precision.

For non-lending pools or non-lending coins within a lending pool, the rate is 1e18.

>>> registry.get_rates('0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27')
(1039244956550111510, 1018479293504725874, 1024993895758183341, 1015710454247817308, 0, 0, 0, 0)

	
Registry.get_virtual_price_from_lp_token(lp_token: address) → uint256: view

	Get the virtual price of a pool LP token.

>>> registry.get_virtual_price_from_lp_token('0x3B3Ac5386837Dc563660FB6a0937DFAa5924333B')
1060673685385893596

Pool Parameters

	
Registry.get_A(pool: address) → uint256: view

	Get the current amplification coefficient for a pool.

>>> registry.get_A('0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27')
500

	
Registry.get_fees(pool: address) → uint256[2]: view

	Get the fees for a pool.

Fees are expressed as integers with a 1e10 precision. The first value is the total fee, the second is the percentage of the fee taken as an admin fee.

A typical return value here is (4000000, 5000000000) - a 0.04% fee, 50% of which is taken as an admin fee.

>>> registry.get_fees('0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27')
(4000000, 5000000000)

	
Registry.get_parameters(pool: address) → PoolParams: view

	Get all parameters for a given pool.

The return value is a struct, organized as follows:

struct PoolParams:
 A: uint256
 future_A: uint256
 fee: uint256
 admin_fee: uint256
 future_fee: uint256
 future_admin_fee: uint256
 future_owner: address
 initial_A: uint256
 initial_A_time: uint256
 future_A_time: uint256

Note that for older pools where initial_A is not public, this value is set to 0.

>>> registry.get_parameters('0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27').dict()
{
 'A': 500,
 'admin_fee': 5000000000,
 'fee': 4000000,
 'future_A': 500,
 'future_A_time': 0,
 'future_admin_fee': 5000000000,
 'future_fee': 4000000,
 'future_owner': "0x56295b752e632f74a6526988eaCE33C25c52c623",
 'initial_A': 0,
 'initial_A_time': 0
}

Gas Estimates

	
Registry.estimate_gas_used(pool: address, _from: address, _to: address) → uint256: view

	Get an estimate on the upper bound for gas used in an exchange.

Pool Metadata

	
Registry.is_meta(pool: address) → bool: view

	Get a boolean identifying whether pool is a metapool.

>>> registry.is_meta('0x4f062658EaAF2C1ccf8C8e36D6824CDf41167956')
True

	
Registry.get_pool_name(pool: address) → String[64]: view

	Get the name given to a pool upon registration.

>>> registry.get_pool_name('0x4f062658EaAF2C1ccf8C8e36D6824CDf41167956')
'gusd'

	
Registry.get_pool_asset_type(pool: address) → uint256: view

	Get the asset type of specific pool as an integer.

Note

The asset type of a pool is subject to modification, and is primarily of use to off-chain integrators.

>>> registry.get_pool_asset_type('0x4f062658EaAF2C1ccf8C8e36D6824CDf41167956')
0

Asset types are as follows:

	0: USD

	1: BTC

	2: ETH

	3: Other StableSwap

	4: CryptoSwap

Gauges

	
Registry.gauge_controller() → address: view

	Get the address of the Curve DAO GaugeController [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/GaugeController.vy] contract.

>>> registry.gauge_controller()
'0x2F50D538606Fa9EDD2B11E2446BEb18C9D5846bB'

	
Registry.get_gauges(pool: address) → (address[10], int128[10]): view

	Get a list of LiquidityGauge [https://github.com/curvefi/curve-contract/tree/master/contracts/gauges] contracts associated with a pool, and their gauge types.

>>> registry.get_gauges('0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27')
(('0x8474DdbE98F5aA3179B3B3F5942D724aFcdec9f6', '0x00', '0x00', '0x00', '0x00', '0x00', '0x00', '0x00', '0x00', '0x00'), (0, 0, 0, 0, 0, 0, 0, 0, 0, 0))

Getting Coins and Coin Swap Complements

	
Registry.coin_count() → uint256: view

	Get the total number of unique coins throughout all registered curve pools.

>>> registry.coin_count()
42

	
Registry.get_coin(i: uint256) → address: view

	Get the ith unique coin throughout all registered curve pools.

Returns 0x00 for values of i greater than the return value of Registry.coin_count.

>>> registry.get_coin(0)
'0x6B175474E89094C44Da98b954EedeAC495271d0F'

	
Registry.get_coin_swap_count(coin: address) → uint256: view

	Get the total number of unique swaps available for coin.

>>> registry.get_coin_swap_count('0x6B175474E89094C44Da98b954EedeAC495271d0F')
12

	
Registry.get_coin_swap_complement(coin: address, i: uint256) → address: view

	Get the ith unique coin available for swapping against coin across all registered curve pools.

>>> registry.get_coin_swap_complement('0x6B175474E89094C44Da98b954EedeAC495271d0F', 0)
'0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48'

Registry Metadata

	
Registry.last_updated() → uint256:: view

	Get the epoch time of the last registry update.

Only successful state modifying functions (add_pool, add_metapool, set_pool_gas_estimates, etc.) will update this return value.

>>> registry.last_updated()
1617850905

Registry: Pool Info

PoolInfo contains aggregate getter methods for querying large data sets about a single pool. It is designed for off-chain use (not optimized for gas efficiency).

Source code for this contract is available on Github [https://github.com/curvefi/curve-pool-registry/blob/master/contracts/PoolInfo.vy].

Deployment Address

The pool info contract is registered in the address provider with ID 1. To get the current address:

>>> provider = Contract('0x0000000022D53366457F9d5E68Ec105046FC4383')
>>> provider.get_address(1)
'0xe64608E223433E8a03a1DaaeFD8Cb638C14B552C'

View Functions

	
PoolInfo.get_pool_coins(pool: address) → address[8], address[8], uint256[8], uint256[8]: view

	Get information about the coins in a pool.

The return data is structured as follows:

	address[8]: Coin addresses

	address[8]: Underlying coin addresses

	uint256[8]: Coin decimal places

	uint256[8]: Coin underlying decimal places

>>> pool_info.get_pool_coins('0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27').dict()
{
 'coins': (
 "0xC2cB1040220768554cf699b0d863A3cd4324ce32",
 "0x26EA744E5B887E5205727f55dFBE8685e3b21951",
 "0xE6354ed5bC4b393a5Aad09f21c46E101e692d447",
 "0x04bC0Ab673d88aE9dbC9DA2380cB6B79C4BCa9aE",
 "0x00",
 "0x00",
 "0x00",
 "0x00"
),
 'decimals': (18, 6, 6, 18, 0, 0, 0, 0),
 'underlying_coins': (
 "0x6B175474E89094C44Da98b954EedeAC495271d0F",
 "0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48",
 "0xdAC17F958D2ee523a2206206994597C13D831ec7",
 "0x4Fabb145d64652a948d72533023f6E7A623C7C53",
 "0x00",
 "0x00",
 "0x00",
 "0x00"
),
 'underlying_decimals': (18, 6, 6, 18, 0, 0, 0, 0)
}

	
PoolInfo.get_pool_info(pool: address) → PoolInfo: view

	Query information about a pool.

The return data is formatted using the following structs:

struct PoolInfo:
 balances: uint256[MAX_COINS]
 underlying_balances: uint256[MAX_COINS]
 decimals: uint256[MAX_COINS]
 underlying_decimals: uint256[MAX_COINS]
 rates: uint256[MAX_COINS]
 lp_token: address
 params: PoolParams
 is_meta: bool
 name: String[64]

this struct is nested inside `PoolInfo`
struct PoolParams:
 A: uint256
 future_A: uint256
 fee: uint256
 admin_fee: uint256
 future_fee: uint256
 future_admin_fee: uint256
 future_owner: address
 initial_A: uint256
 initial_A_time: uint256
 future_A_time: uint256

An example query:

>>> pool_info.get_pool_info('0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27').dict()
{
 'balances': (11428161394428689823275227, 47831326741306, 45418708932136, 48777578907442492245548483, 0, 0, 0, 0),
 'decimals': (18, 6, 6, 18, 0, 0, 0, 0),
 'lp_token': "0x3B3Ac5386837Dc563660FB6a0937DFAa5924333B",
 'params': (500, 500, 4000000, 5000000000, 4000000, 5000000000, "0x56295b752e632f74a6526988eaCE33C25c52c623", 0, 0, 0),
 'rates': (1039246194444517276, 1018480818866816704, 1024994762508449404, 1015710534981182027, 0, 0, 0, 0),
 'underlying_balances': (11876673238657763875985115, 48715288826971602262153927, 46553938775335128958626025, 49543900767165234117573778, 0, 0, 0, 0),
 'underlying_decimals': (18, 6, 6, 18, 0, 0, 0, 0),
 'is_meta': False,
 'name': 'busd'
}

Registry: Exchanges

The registry exchange contract is used to find pools and query exchange rates for token swaps. It also provides a unified exchange API that can be useful for on-chain integrators.

Source code for this contract is available on Github [https://github.com/curvefi/curve-pool-registry/blob/master/contracts/Swaps.vy].

Deployment Address

The exchange contract is registered in the address provider with ID 2. To get the current address:

>>> provider = Contract('0x0000000022D53366457F9d5E68Ec105046FC4383')
>>> provider.get_address(2)
'0xD1602F68CC7C4c7B59D686243EA35a9C73B0c6a2'

Finding Pools and Swap Rates

	
Swaps.get_best_rate(_from: address, _to: address, _amount: uint256, _exclude_pools: address[8]) → (address, uint256): view

	Find the pool offering the best rate for a given swap.

	_from: Address of coin being sent.

	_to: Address of coin being received.

	_amount: Quantity of _from being sent.

	_exclude_pools: [optional] A list of up to 8 addresses which should be excluded from the query.

Returns the address of the pool offering the best rate, and the expected amount received in the swap.

	
Swaps.get_exchange_amount(_pool: address, _from: address, _to: address, _amount: uint256) → uint256: view

	Get the current number of coins received in an exchange.

	_pool: Pool address.

	_from: Address of coin to be sent.

	_to: Address of coin to be received.

	_amount: Quantity of _from to be sent.

Returns the quantity of _to to be received in the exchange.

Swapping Tokens

	
Swaps.exchange(_pool: address, _from: address, _to: address, _amount: uint256, _expected: uint256, _receiver: address = msg.sender) → uint256: payable

	Perform an token exchange using a specific pool.

	_pool: Address of the pool to use for the swap.

	_from: Address of coin being sent.

	_to: Address of coin being received.

	_amount: Quantity of _from being sent.

	_expected: Minimum quantity of _to received in order for the transaction to succeed.

	_receiver: Optional address to transfer the received tokens to. If not specified, defaults to the caller.

Returns the amount of _to received in the exchange.

	
Swaps.exchange_with_best_rate(_from: address, _to: address, _amount: uint256, _expected: uint256, _receiver: address = msg.sender) → uint256: payable

	Perform an exchange using the pool that offers the best rate.

	_from: Address of coin being sent.

	_to: Address of coin being received.

	_amount: Quantity of _from being sent.

	_expected: Minimum quantity of _to received in order for the transaction to succeed.

	_receiver: Optional address to transfer the received tokens to. If not specified, defaults to the caller.

Returns the amount of _to received in the exchange.

Warning

This function queries the exchange rate for every pool where a swap between _to and _from is possible. For pairs that can be swapped in many pools this will result in very significant gas costs!

MetaPool Factory

The metapool factory allows for permissionless deployment of Curve metapools.

Source code for factory contracts may be viewed on Github [https://github.com/curvefi/curve-factory].

Organization

The metapool factory has several core components:

	The factory is the main contract used to deploy new metapools. It also acts a registry for finding the deployed pools and querying information about them.

	Pools are deployed via a proxy contract. The implementation contract targetted by the proxy is determined according to the base pool. This is the same technique used to create pools in Uniswap V1.

	Deposit contracts (“zaps”) are used for wrapping and unwrapping underlying assets when depositing into or withdrawing from pools.

Metapool Factory: Deployer and Registry

The Factory contract is used to deploy new Curve pools and to find existing ones. It is deployed to the mainnet at the following address:

0xB9fC157394Af804a3578134A6585C0dc9cc990d4 [https://etherscan.io/address/0xB9fC157394Af804a3578134A6585C0dc9cc990d4]

Source code for this contract is may be viewed on Github [https://github.com/curvefi/curve-factory/blob/master/contracts/Factory.vy].

Warning

Please carefully review the limitations of the factory prior to deploying a new pool. Deploying a pool using an incompatible token could result in permanent losses to liquidity providers and/or traders. Factory pools cannot be killed and tokens cannot be rescued from them!

Deploying a Pool

	
Factory.deploy_metapool(_base_pool: address, _name: String[32], _symbol: String[10], _coin: address, _A: uint256, _fee: uint256) → address: nonpayable

	Deploys a new metapool.

	_base_pool: Address of the base pool to use within the new metapool.

	_name: Name of the new metapool.

	_symbol: Symbol for the new metapool’s LP token. This value will be concatenated with the base pool symbol.

	_coin: Address of the coin being used in the metapool

	_A: Amplification coefficient

	_fee: Trade fee, given as an integer with 1e10 precision.

Returns the address of the newly deployed pool.

>>> factory = Contract('0xB9fC157394Af804a3578134A6585C0dc9cc990d4')
>>> esd = Contract('0x36F3FD68E7325a35EB768F1AedaAe9EA0689d723')
>>> threepool = Contract('0xbEbc44782C7dB0a1A60Cb6fe97d0b483032FF1C7')

>>> tx = factory.deploy_metapool(threepool, "Empty Set Dollar", "ESD", esd, 10, 4000000, {'from': alice})
Transaction sent: 0x2702cfc4b96be1877f853c246be567cbe8f80ef7a56348ace1d17c026bc31b68
 Gas price: 20 gwei Gas limit: 1100000 Nonce: 9

>>> tx.return_value
"0xFD9f9784ac00432794c8D370d4910D2a3782324C"

Note

After deploying a pool, you must also add initial liquidity before the pool can be used.

Limitations

	The token within the new pool must expose a decimals method and use a maximum of 18 decimal places.

	The token’s transfer and transferFrom methods must revert upon failure.

	Successful token transfers must move exactly the specified number of tokens between the sender and receiver. Tokens that take a fee upon a successful transfer may cause the pool to break or act in unexpected ways.

	Token balances must not change without a transfer. Rebasing tokens are not supported!

	Pools deployed by the factory cannot be paused or killed.

	Pools deployed by the factory are not eligible for CRV rewards.

Base Pools

A metapool pairs a coin against the LP token of another pool. This other pool is referred to as the “base pool”. By using LP tokens, metapools allow swaps against any asset within their base pool, without diluting the base pool’s liquidity.

The factory allows deployment of metapools that use the following base pools:

	3pool [https://www.curve.fi/3pool] (USD denominated assets): 0xbEbc44782C7dB0a1A60Cb6fe97d0b483032FF1C7 [https://etherscan.io/address/0xbEbc44782C7dB0a1A60Cb6fe97d0b483032FF1C7]

	sBTC [https://www.curve.fi/sbtc] (BTC denominated assets): 0x7fC77b5c7614E1533320Ea6DDc2Eb61fa00A9714 [https://etherscan.io/address/0x7fC77b5c7614E1533320Ea6DDc2Eb61fa00A9714]

It is possible to enable additional base pools through a DAO vote.

Choosing an Amplification Coefficient

The amplification co-efficient (“A”) determines a pool’s tolerance for imbalance between the assets within it. A higher value means that trades will incure slippage sooner as the assets within the pool become imbalanced.

The appropriate value for A is dependent upon the type of coin being used within the pool. We recommend the following values:

	Uncollateralized algorithmic stablecoins: 5-10

	Non-redeemable, collateralized assets: 100

	Redeemable assets: 200-400

It is possible to modify the amplification coefficient for a pool after it has been deployed. However, it requires a vote within the Curve DAO and must reach a 15% quorum.

Trade fees

Curve pools charge a fee for token exchanges and when adding or removing liquidity in an imbalanced manner. 50% of the fees are given to liquidity providers, 50% are distributed to veCRV holders.

For factory pools, the size of the fee is set at deployment. The minimum fee is 0.04% (represented as 4000000). The maximum fee is 1% (100000000). The fee cannot be changed after a pool has been deployed.

Finding Pools

The following getter methods are available for finding pools that were deployed via the factory:

	
Factory.pool_count() → uint256: view

	Returns the total number of pools that have been deployed by the factory.

	
Factory.pool_list(i: uint256) → address: view

	Returns the n’th entry in a zero-indexed array of deployed pools. Returns ZERO_ADDRESS when i is greater than the number of deployed pools.

Note that because factory-deployed pools are not killable, they also cannot be removed from the registry. For this reason the ordering of pools within this array will never change.

	
Factory.find_pool_for_coins(_from: address, _to: address, i: uint256 = 0) → address: view

	Finds a pool that allows for swaps between _from and _to. You can optionally include i to get the i-th pool, when multiple pools exist for the given pairing.

The order of _from and _to does not affect the result.

Returns ZERO_ADDRESS when swaps are not possible for the pair or i exceeds the number of available pools.

>>> esd = Contract('0x36F3FD68E7325a35EB768F1AedaAe9EA0689d723')
>>> usdc = Contract('0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48')

>>> factory.find_pool_for_coins(esd, usdc)
'0xFD9f9784ac00432794c8D370d4910D2a3782324C'

Getting Pool Info

The factory has a similar API to that of the main Registry, which can be used to query information about existing pools.

Coins and Coin Info

	
Factory.get_n_coins(pool: address) → uint256[2]: view

	Get the number of coins and underlying coins within a pool.

>>> factory.get_n_coins('0xFD9f9784ac00432794c8D370d4910D2a3782324C')
(2, 4)

	
Factory.get_coins(pool: address) → address[2]: view

	Get a list of the swappable coins within a pool.

>>> factory.get_coins('0xFD9f9784ac00432794c8D370d4910D2a3782324C')
("0x36F3FD68E7325a35EB768F1AedaAe9EA0689d723", "0x6c3F90f043a72FA612cbac8115EE7e52BDe6E490")

	
Factory.get_underlying_coins(pool: address) → address[8]: view

	Get a list of the swappable underlying coins within a pool.

>>> factory.get_underlying_coins('0xFD9f9784ac00432794c8D370d4910D2a3782324C')
("0x36F3FD68E7325a35EB768F1AedaAe9EA0689d723", "0x6B175474E89094C44Da98b954EedeAC495271d0F", "0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48", "0xdAC17F958D2ee523a2206206994597C13D831ec7", "0x00", "0x00", "0x00", "0x00")

	
Factory.get_decimals(pool: address) → uint256[8]: view

	Get a list of decimal places for each coin within a pool.

>>> factory.get_decimals('0xFD9f9784ac00432794c8D370d4910D2a3782324C')
(18, 18, 0, 0, 0, 0, 0, 0)

	
Factory.get_underlying_decimals(pool: address) → uint256[8]: view

	Get a list of decimal places for each underlying coin within a pool.

For pools that do not involve lending, the return value is identical to Registry.get_decimals. Non-lending coins that still involve querying a rate (e.g. renBTC) are marked as having 0 decimals.

>>> factory.get_underlying_decimals('0xFD9f9784ac00432794c8D370d4910D2a3782324C')
(18, 18, 6, 6, 0, 0, 0, 0)

	
Factory.get_coin_indices(pool: address, _from: address, _to: address) → (int128, int128, bool): view

	Convert coin addresses into indices for use with pool methods.

Returns the index of _from, index of _to, and a boolean indicating if the coins are considered underlying in the given pool.

>>> factory.get_coin_indices('0xFD9f9784ac00432794c8D370d4910D2a3782324C', '0xdac17f958d2ee523a2206206994597c13d831ec7', '0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48')
(2, 1, True)

Based on the above call, we know:

	the index of the coin we are swapping out of is 2

	the index of the coin we are swapping into is 1

	the coins are considred underlying, so we must call exchange_underlying

From this information we can perform a token swap:

>>> swap = Contract('0xFD9f9784ac00432794c8D370d4910D2a3782324C')
>>> swap.exchange_underlying(2, 1, 1e18, 0, {'from': alice})

Balances and Rates

	
Factory.get_balances(pool: address) → uint256[2]: view

	Get available balances for each coin within a pool.

These values are not necessarily the same as calling Token.balanceOf(pool) as the total balance also includes unclaimed admin fees.

>>> factory.get_balances('0xFD9f9784ac00432794c8D370d4910D2a3782324C')
(11428161394428689823275227, 47831326741306)

	
Factory.get_underlying_balances(pool: address) → uint256[8]: view

	Get balances for each underlying coin within a pool.

>>> factory.get_underlying_balances('0xFD9f9784ac00432794c8D370d4910D2a3782324C')
(11876658145799734093379928, 48715210997790596223520238, 46553896776332824101242804, 49543896565857325657915396, 0, 0, 0, 0)

	
Factory.get_admin_balances(pool: address) → uint256[2]: view

	Get the current admin balances (uncollected fees) for a pool.

>>> factory.get_admin_balances('0xFD9f9784ac00432794c8D370d4910D2a3782324C')
(10800690926373756722358, 30891687335)

	
Factory.get_rates(pool: address) → uint256[2]: view

	Get the exchange rates between coins and underlying coins within a pool, normalized to a 1e18 precision.

>>> factory.get_rates('0xFD9f9784ac00432794c8D370d4910D2a3782324C')
(1000000000000000000, 1018479293504725874)

Metapool Factory: Pools

Factory pools are permissionless metapools that can be deployed by anyone. New pools are deployed using Factory.deploy_metapool.

Source code for the implementation contracts may be viewed on Github [https://github.com/iamdefinitelyahuman/curve-factory/blob/master/contracts].

Implementation Contracts

Each pool deployed by the factory is a thin proxy contract created with Vyper’s create_forwarder_to. The implementation contract targetted by the proxy is determined based on the base pool used. This is the same technique that was used to create pools in Uniswap V1.

The implementation contracts used for pools are deployed to the mainnet at the following addresses:

	3pool: 0x5F890841f657d90E081bAbdB532A05996Af79Fe6 [https://etherscan.io/address/0x5F890841f657d90E081bAbdB532A05996Af79Fe6]

	sBTC: 0x2f956eee002b0debd468cf2e0490d1aec65e027f [https://etherscan.io/address/0x2f956eee002b0debd468cf2e0490d1aec65e027f]

When interacting with a factory pool you should use the ABI at the corresponding implementation address:

>>> implementation = Contract("0x5F890841f657d90E081bAbdB532A05996Af79Fe6")
>>> abi = implementation.abi
>>> pool = Contract.from_abi("ESD Pool", "0xFD9f9784ac00432794c8D370d4910D2a3782324C", abi)

Getting Pool Info

	
StableSwap.coins(i: uint256) → address: view

	Getter for the array of swappable coins within the pool. The last coin will always be the LP token of the base pool.

>>> pool.coins(0)
'0x36F3FD68E7325a35EB768F1AedaAe9EA0689d723'

	
StableSwap.balances(i: uint256) → uint256: view

	Getter for the pool balances array.

>>> pool.balances(0)
4898975297808622168122

	
StableSwap.A() → uint256: view

	The amplification coefficient for the pool.

>>> pool.A()
10

	
StableSwap.get_virtual_price() → uint256: view

	The current price of the pool LP token relative to the underlying pool assets. Given as an integer with 1e18 precision.

>>> pool.get_virtual_price()
1006391979770742306

	
StableSwap.fee() → uint256: view

	The pool swap fee, as an integer with 1e10 precision.

>>> pool.fee()
4000000

	
StableSwap.admin_fee() → uint256: view

	The percentage of the swap fee that is taken as an admin fee, as an integer with with 1e10 precision.

For factory pools this is hardcoded at 50% (5000000000).

>>> pool.admin_fee()
5000000000

Making Exchanges

	
StableSwap.get_dy(i: int128, j: int128, dx: uint256) → uint256: view

	Get the amount received (“dy”) when performing a swap between two assets within the pool.

Index values can be found using the coins public getter method, or get_coins within the factory contract.

	i: Index value of the coin to send.

	j: Index value of the coin to receive.

	dx: The amount of i being exchanged.

Returns the amount of j received.

>>> pool.get_dy(0, 1, 10**18)
460306318211728896

	
StableSwap.get_dy_underlying(i: int128, j: int128, dx: uint256) → uint256: view

	Get the amount received (“dy”) when swapping between two underlying assets within the pool.

Index values can be found using get_underlying_coins within the factory contract.

	i: Index value of the token to send.

	j: Index value of the token to receive.

	dx: The amount of i being exchanged.

Returns the amount of j received.

>>> pool.get_dy_underlying(0, 1, 10**18)
463415003137589177

	
StableSwap.exchange(i: int128, j: int128, dx: uint256, min_dy: uint256, _receiver: address = msg.sender) → uint256: nonpayable

	Performs an exchange between two tokens.

Index values can be found using the coins public getter method, or get_coins within the factory contract.

	i: Index value of the token to send.

	j: Index value of the token to receive.

	dx: The amount of i being exchanged.

	min_dy: The minimum amount of j to receive. If the swap would result in less, the transaction will revert.

	_receiver: An optional address that will receive j. If not given, defaults to the caller.

Returns the amount of j received in the exchange.

>>> expected = pool.get_dy(0, 1, 10**18) * 0.99
>>> pool.exchange(0, 1, 10**18, expected, {'from': alice})

	
StableSwap.exchange_underlying(i: int128, j: int128, dx: uint256, min_dy: uint256, _receiver: address = msg.sender) → uint256: nonpayable

	Perform an exchange between two underlying coins.

Index values can be found using get_underlying_coins within the factory contract.

	i: Index value of the underlying token to send.

	j: Index value of the underlying token to receive.

	dx: The amount of i being exchanged.

	min_dy: The minimum amount of j to receive. If the swap would result in less, the transaction will revert.

	_receiver: An optional address that will receive j. If not given, defaults to the caller.

Returns the amount of j received in the exchange.

>>> expected = pool.get_dy_underlying(0, 3, 10**18) * 0.99
>>> pool.exchange_underlying(0, 3, 10**18, expected, {'from': alice})

Adding and Removing Liquidity

Note that if you wish to add or remove liqudity using the underlying assets within the base pool, you must use a depositor contract.

	
StableSwap.calc_token_amount(_amounts: uint256[2], _is_deposit: bool [https://docs.python.org/3.8/library/functions.html#bool]) → uint256: view

	Estimate the amount of LP tokens minted or burned based on a deposit or withdrawal.

This calculation accounts for slippage, but not fees. It should be used as a basis for determining expected amounts when calling add_liquidity or remove_liquidity_imbalance, but should not be considered to be precise!

	_amounts: Amount of each coin being deposited. Amounts correspond to the tokens at the same index locations within coins.

	_is_deposit: set True for deposits, False for withdrawals.

Returns the expected amount of LP tokens minted or burned.

	
StableSwap.calc_withdraw_one_coin(_burn_amount: uint256, i: int128) → uint256: view

	Calculate the amount received when withdrawing and unwrapping in a single coin. Useful for setting _max_burn_amount when calling remove_liquidity_one_coin.

	_pool: Address of the pool to deposit into.

	_token_amount: Amount of LP tokens to burn in the withdrawal.

	i: Index value of the underlying coin to withdraw. Can be found using the coins getter method.

Returns the expected amount of coin received.

	
StableSwap.add_liquidity(_deposit_amounts: uint256[2], _min_mint_amount: uint256, _receiver: address = msg.sender) → uint256: nonpayable

	Deposits coins into to the pool and mints new LP tokens.

	_deposit_amounts: List of amounts of underlying coins to deposit. Amounts correspond to the tokens at the same index locations within coins.

	_min_mint_amount: Minimum amount of LP tokens to mint from the deposit.

	_receiver: Optional address that receives the LP tokens. If not specified, they are sent to the caller.

Returns the amount of LP tokens that were minted in the deposit.

>>> amounts = [1e18, 1e18]
>>> expected = pool.calc_token_amount(amounts, True) * 0.99
>>> pool.add_liquidity(amounts, expected, {'from': alice})

	
StableSwap.remove_liquidity(_burn_amount: uint256, _min_amounts: uint256[2], _receiver: address = msg.sender) → uint256[2]: nonpayable

	Withdraws coins from the pool and burns LP tokens.

Withdrawal amounts are based on current deposit ratios. Withdrawals using this method do not incur a fee.

	_burn_amount: Quantity of LP tokens to burn in the withdrawal. Amounts correspond to the tokens at the same index locations within coins.

	_min_amounts: Minimum amounts of coins to receive.

	_receiver: Optional address that receives the withdrawn coins. If not specified, the coins are sent to the caller.

Returns a list of the amounts of coins that were withdrawn.

>>> amount = pool.balanceOf(alice)
>>> pool.remove_liquidity(pool, amount, 0, {'from': alice})

	
StableSwap.remove_liquidity_imbalance(_amounts: uint256[2], _max_burn_amount: uint256, _receiver: address = msg.sender) → uint256: nonpayable

	Withdraw coins in an imbalanced amount.

	_amounts: List of amounts of underlying coins to withdraw. Amounts correspond to the tokens at the same index locations within coins.

	_max_burn_amount: Maximum number of LP token to burn in the withdrawal.

	_receiver: Optional address that receives the withdrawn coins. If not specified, the coins are sent to the caller.

Returns the amount of the LP tokens burned in the withdrawal.

>>> amounts = [1e18, 1e18]
>>> expected = pool.calc_token_amount(amounts, False) * 1.01
>>> pool.remove_liquidity_imbalance(pool, amounts, expected, {'from': alice})

	
StableSwap.remove_liquidity_one_coin(_burn_amount: uint256, i: int128, _min_received: uint256, _receiver: address = msg.sender) → uint256: nonpayable

	Withdraw a single asset from the pool.

	_burn_amount: Amount of LP tokens to burn in the withdrawal.

	i: Index value of the coin to withdraw. Can be found using the coins getter method.

	_min_amount: Minimum amount of the coin to receive

	_receiver: Optional address that receives the withdrawn coin. If not specified, the coin is sent to the caller.

Returns the amount of the coin received in the withdrawal.

>>> amount = pool.balanceOf(alice)
>>> expected = pool.calc_withdraw_one_coin(pool, amount, 0) * 1.01
>>> pool.remove_liquidity_one_coin(amount, expected, 0, {'from': alice})

Claiming Admin Fees

	
StableSwap.withdraw_admin_fees(): nonpayable

	Transfer admin fees to the fee distributor, allowing the fees to be claimed by veCRV holders.

Anyone can call this method. The destination address for the fees is hardcoded. To simplify fee distribution, this method swaps the admin balance of the non-base pool LP token into the base pool LP token.

LP Tokens

Factory pools differ from traditional Curve pools in that the pool contract is also the LP token. This improves gas efficiency and simplifies the factory deployment process.

Pool contracts adhere to the ERC-20 standard [https://eips.ethereum.org/EIPS/eip-20]. As such, the following methods are available:

Token Info

	
StableSwap.name() → String[64]: view

	The name of the pool / LP token.

	
StableSwap.symbol() → String[32]: view

	The token symbol.

	
StableSwap.decimals() → uint256: view

	The number of decimals for the token. Curve pool tokens always use 18 decimals.

	
StableSwap.totalSupply() → uint256: view

	

Balances and Allowances

	
StableSwap.balanceOf(_addr: address) → uint256: view

	Getter for the current balance of an account.

	
StableSwap.allowance(_owner: address, _spender: address) → uint256: view

	Getter for the number of tokens _owner has approve _spender to transfer on their behalf.

2**256-1 it is considered infinite approval. The approval amount will not decrease when tokens are transferred.

Transfers and Approvals

	
StableSwap.approve(_spender: address, _value: uint256) → bool: nonpayable

	Approve _spender to transfer up to _value tokens on behalf of the caller.

If an approval is given for 2**256-1 it is considered infinite. The approval amount will not decrease when tokens are transferred, reducing gas costs.

	_spender Address to set the approval for

	_value Amount of the caller’s tokens that _spender is permitted to transfer

Returns True on success. Reverts on failure.

	
StableSwap.transfer(_to: address, _value: uint256) → bool: nonpayable

	Transfer tokens from the caller to the given address.

	_to: Address receiving the tokens.

	_value: Amount of tokens to be transferred.

Returns True on a successful call. Reverts on failure.

	
StableSwap.transferFrom(_from: address, _to: address, _value: uint256) → bool: nonpayable

	Transfer tokens between two addresses. The caller must have been given approval to transfer tokens on behalf of _from or the call will revert.

	_from: The address to transfer the tokens from.

	_to: Address receiving the tokens.

	_value: mount of tokens to be transferred.

Returns True on a successful call. Reverts on failure.

Metapool Factory: Oracles

Factory contracts include Time-Weighted Average Price oracles. To understand these a bit better, you need to understand how Curve calculates price.

A curve pool is an array of balances of the tokens it holds. To provide a price, it calculates how much of x you can receive given amount y.

Time-Weighted Average Price oracles

	
MetaPool.get_price_cumulative_last() → uint256[N_COINS]:

	Returns the current time-weighted average price (TWAP). This will represent the underlying balances of the pool.

The value returned is the cumulative pool shifting balances over time

	
MetaPool.block_timestamp_last() → uint256:

	Returns the last timestamp that a TWAP reading was taken in unix time.

	
MetaPool.get_twap_balances(_first_balances: uint256[N_COINS], _last_balances: uint256[N_COINS], _time_elapsed: uint256) → uint256[N_COINS]:

	Calculate the current effective TWAP balances given two snapshots over time, and the time elapsed between the two snapshots.

	_first_balances: First price_cumulative_last array that was snapshot via get_price_cumulative_last

	_last_balances: Second price_cumulative_last array that was snapshot via get_price_cumulative_last

	_time_elapsed: The elapsed time in seconds between _first_balances and _last_balances

Returns the balances of the TWAP value.

	
MetaPool.get_dy(i: int128, j: int128, dx: uint256, _balances: uint256[N_COINS] = [0, 0]) → uint256:

	Calculate the price for exchanging a token with index i to token with index j and amount dx given the _balances provided.

	i: The index of the coin being sent to the pool, as it related to the metapool

	j: The index of the coin being received from the pool, as it relates to the metapool

	dx: The amount of i being sent to the pool

	_balances: The array of balances to be used for purposes of calculating the output amount / exchange rate, this is the value returned in get_twap_balances

Returns the quote / price as dy given dx.

Security

The Curve TWAP is greatly inspired by Uniswap TWAP architecture [https://uniswap.org/docs/v2/core-concepts/oracles/], in that the price is a cumulative value over time, which reduces balance shifts due to flash loans, but also records the balances based on the previous block, to avoid recording flashloan data.

Metapool Factory: Deposit Contracts

Deposit contracts (also known as “zaps”) allow users to add and remove liquidity from a pool using the pool’s underlying tokens.

Deployment Addresses

A single zap is used for all factory metapools targetting one base pool. The zaps are deployed to mainnet at the following addresses:

	3pool: 0xA79828DF1850E8a3A3064576f380D90aECDD3359 [https://etherscan.io/address/0xa79828df1850e8a3a3064576f380d90aecdd3359]

	sBTC: 0x7AbDBAf29929e7F8621B757D2a7c04d78d633834 [https://etherscan.io/address/0x7abdbaf29929e7f8621b757d2a7c04d78d633834]

Calculating Expected Amounts

	
DepositZap.calc_withdraw_one_coin(_pool: address, _token_amount: uint256, i: int128) → uint256: view

	Calculate the amount received when withdrawing and unwrapping in a single coin. Useful for setting _max_burn_amount when calling remove_liquidity_one_coin.

	_pool: Address of the pool to deposit into.

	_token_amount: Amount of LP tokens to burn in the withdrawal.

	i: Index value of the underlying coin to withdraw.

Returns the expected amount of coin received.

	
DepositZap.calc_token_amount(_pool: address, _amounts: uint256[4], _is_deposit: bool [https://docs.python.org/3.8/library/functions.html#bool]) → uint256: view

	Calculate addition or reduction in token supply from a deposit or withdrawal.

This calculation accounts for slippage, but not fees. It should be used as a basis for determining expected amounts when calling add_liquidity or remove_liquidity_imbalance, but should not be considered to be precise!

	_pool: Address of the pool to deposit into.

	_amounts: Amount of each underlying coin being deposited or withdrawn. Amounts correspond to the tokens at the same index locations within Factory.get_underlying_coins.

	_is_deposit: set True for deposits, False for withdrawals.

Returns the expected amount of LP tokens received.

Adding Liquidity

	
DepositZap.add_liquidity(_pool: address, _deposit_amounts: uint256[4], _min_mint_amount: uint256, _receiver: address = msg.sender) → uint256: nonpayable

	Wraps underlying coins and deposit them into _pool.

	_pool: Address of the pool to deposit into.

	_deposit_amounts: List of amounts of underlying coins to deposit. Amounts correspond to the tokens at the same index locations within Factory.get_underlying_coins.

	_min_mint_amount: Minimum amount of LP tokens to mint from the deposit.

	_receiver: Optional address that receives the LP tokens. If not specified, they are sent to the caller.

Returns the amount of LP tokens that were minted in the deposit.

>>> zap = Contract('0x7AbDBAf29929e7F8621B757D2a7c04d78d633834')
>>> pool = Contract('0xFD9f9784ac00432794c8D370d4910D2a3782324C')

>>> amounts = [1e18, 1e18, 1e6, 1e6]
>>> expected = zap.calc_token_amount(pool, amounts, True) * 0.99
>>> zap.add_liquidity(pool, amounts, expected, {'from': alice})

Removing Liquidity

	
DepositZap.remove_liquidity(_pool: address, _burn_amount: uint256, _min_amounts: uint256[4], _receiver: address = msg.sender) → uint256[4]: nonpayable

	Withdraw underlying coins from _pool.

Withdrawal amounts are based on current deposit ratios. Withdrawals using this method do not incur a fee.

	_pool: Address of the pool to withdraw from.

	_burn_amount: Quantity of LP tokens to burn in the withdrawal. Amounts correspond to the tokens at the same index locations within Factory.get_underlying_coins.

	_min_amounts: Minimum amounts of underlying coins to receive.

	_receiver: Optional address that receives the withdrawn coins. If not specified, the coins are sent to the caller.

Returns a list of the amounts of underlying coins that were withdrawn.

>>> zap = Contract('0x7AbDBAf29929e7F8621B757D2a7c04d78d633834')
>>> pool = Contract('0xFD9f9784ac00432794c8D370d4910D2a3782324C')

>>> amount = pool.balanceOf(alice)
>>> zap.remove_liquidity(pool, amount, 0, {'from': alice})

	
DepositZap.remove_liquidity_one_coin(_pool: address, _burn_amount: uint256, i: int128, _min_amount: uint256, _receiver: address = msg.sender) → uint256: nonpayable

	Withdraw from _pool in a single coin.

	_pool: Address of the pool to withdraw from.

	_burn_amount: Amount of LP tokens to burn in the withdrawal

	i: Index value of the coin to withdraw. Can be found using Factory.get_underlying_coins.

	_min_amount: Minimum amount of underlying coin to receive

	_receiver: Optional address that receives the withdrawn coin. If not specified, the coin is sent to the caller.

Returns the amount of the underlying coin received in the withdrawal.

>>> zap = Contract('0x7AbDBAf29929e7F8621B757D2a7c04d78d633834')
>>> pool = Contract('0xFD9f9784ac00432794c8D370d4910D2a3782324C')

>>> amount = pool.balanceOf(alice)
>>> expected = zap.calc_withdraw_one_coin(pool, amount, 2) * 1.01
>>> zap.remove_liquidity_one_coin(pool, amount, expected, 2, {'from': alice})

	
DepositZap.remove_liquidity_imbalance(_pool: address, _amounts: uint256[N_ALL_COINS], _max_burn_amount: uint256, _receiver: address = msg.sender) → uint256: nonpayable

	Withdraw coins from _pool in an imbalanced amount.

	_pool: Address of the pool to withdraw from.

	_amounts: List of amounts of underlying coins to withdraw. Amounts correspond to the tokens at the same index locations within Factory.get_underlying_coins.

	_max_burn_amount: Maximum number of LP token to burn in the withdrawal.

	_receiver: Optional address that receives the withdrawn coins. If not specified, the coins are sent to the caller.

Returns the amount of the LP tokens burned in the withdrawal.

>>> zap = Contract('0x7AbDBAf29929e7F8621B757D2a7c04d78d633834')
>>> pool = Contract('0xFD9f9784ac00432794c8D370d4910D2a3782324C')

>>> amounts = [1e18, 1e18, 1e6, 1e6]
>>> expected = zap.calc_token_amount(pool, amounts, False) * 1.01
>>> zap.remove_liquidity_imbalance(pool, amounts, expected, {'from': alice})

Note

The deposit contract must be approved to transfer _max_burn_amount LP tokens from the caller or the transaction will fail.

Metapool Factory: Liquidity Migrator

The PoolMigrator contract is used for migrating liquidity between Curve factory pools. It is deployed to the mainnet at the following address:

0xd6930b7f661257DA36F93160149b031735237594 [https://etherscan.io/address/0xd6930b7f661257DA36F93160149b031735237594]

Source code for this contract is may be viewed on Github [https://github.com/curvefi/curve-factory/blob/master/contracts/PoolMigrator.vy].

Migrating Liquidity between Pools

	
Factory.migrate_to_new_pool(_old_pool: address, _new_pool: address, _amount: uint256) → uint256:

	Migrate liquidity between two pools.

Each pool must be deployed by the curve factory (v1 or v2) and contain identical assets. Depending on the imbalance of each pool, the migration may incur slippage or provide a bonus.

Prior to calling this method, the caller must have given approval for the migrator to transfer up to _amount LP tokens from _old_pool.

	_old_pool: Address of the pool to migrate from

	_new_pool: Address of the pool to migrate into

	_amount: Number of _old_pool LP tokens to migrate

Returns the number of _new_pool LP tokens received in the migration.

>>> migrator = Contract('0xd6930b7f661257DA36F93160149b031735237594')
>>> old_pool = Contract('0x36F3FD68E7325a35EB768F1AedaAe9EA0689d723')
>>> new_pool = Contract('0x83D2944d5fC10A064451Dc5852f4F47759F249B6')

>>> balance = old_pool.balanceOf(alice)

>>> old_pool.approve(migrator, balance, {'from': alice})
Transaction sent: 0x8fc0dc0844ccbbed63d9cb7f2820087db5f70b320efea7ef4ce6b4a678e3cd45
 Gas price: 20 gwei Gas limit: 1100000 Nonce: 9

>>> migrator.migrate_to_new_pool(old_pool, new_pool, balance, {'from': alice})
Transaction sent: 0xd65182491c13b2620f84fe2d501ace5c8ab1cda1b9ea54d40f4f2351cccd52b6
 Gas price: 20 gwei Gas limit: 1100000 Nonce: 10

Contributor Guide

Curve is open-source and consists of a number of repositories on Github [https://github.com/curvefi/]. Contributions are welcome!

On-chain contracts are spread across different Curve repositories as such:

	curve-contract [https://github.com/curvefi/curve-contract]: contracts for Curve stable swap pools

	curve-dao-contracts [https://github.com/curvefi/curve-dao-contracts]: contracts owned by DAO (e.g., liquidity gauges, burners and fee distributor)

	curve-pool-registry [https://github.com/curvefi/curve-pool-registry]: contracts for on-chain information on pools and swaps

In order to make contributing to Curve as seamless as possible, please read thoroughly through these contribution guidelines.

General

Commit Messages

Contributors should adhere to the following standards and best practices when making commits to be merged into the Curve codebase.

Conventional Commits

Commit messages should adhere to the Conventional Commits [https://www.conventionalcommits.org/] standard. A conventional commit message is structured as follows:

<type>[optional scope]: <description>

[optional body]

[optional footer]

The commit contains the following elements, to communicate intent to the consumers of your library:

	fix: a commit of the type fix patches a bug in your codebase (this correlates with PATCH in semantic versioning).

	feat: a commit of the type feat introduces a new feature to the codebase (this correlates with MINOR in semantic versioning).

	BREAKING CHANGE: a commit that has the text BREAKING CHANGE: at the beginning of its optional body or footer section introduces a breaking API change. A BREAKING CHANGE can be part of commits of any type.

The use of commit types other than fix: and feat: is recommended. For example: docs:, style:, refactor:, test:, chore:, or improvement:.

Best Practices

We recommend the following best practices for commit messages (taken from How To Write a Commit Message [https://chris.beams.io/posts/git-commit/]:

	Limit the subject line to 50 characters.

	Use imperative, present tense in the subject line.

	Capitalize the subject line.

	Do not end the subject line with a period.

	Separate the subject from the body with a blank line.

	Wrap the body at 72 characters.

	Use the body to explain what and why vs. how.

Github Standard Fork and Pull Request Workflow

Original version: https://gist.github.com/Chaser324/ce0505fbed06b947d962

Whether you’re trying to give back to the open source community or collaborating on your own projects, knowing how to properly fork and generate pull requests is essential. Unfortunately, it’s quite easy to make mistakes or not know what you should do when you’re initially learning the process. I know that I certainly had considerable initial trouble with it, and I found a lot of the information on GitHub and around the internet to be rather piecemeal and incomplete - part of the process described here, another there, common hangups in a different place, and so on.

In an attempt to coallate this information for myself and others, this short tutorial is what I’ve found to be fairly standard procedure for creating a fork, doing your work, issuing a pull request, and merging that pull request back into the original project.

Creating a Fork

Just head over to the GitHub page and click the “Fork” button. It’s just that simple. Once you’ve done that, you can use your favorite git client to clone your repo or just head straight to the command line:

Clone your fork to your local machine
git clone git@github.com:USERNAME/FORKED-PROJECT.git

Keeping Your Fork Up to Date

While this isn’t an absolutely necessary step, if you plan on doing anything more than just a tiny quick fix, you’ll want to make sure you keep your fork up to date by tracking the original “upstream” repo that you forked. To do this, you’ll need to add a remote:

Add 'upstream' repo to list of remotes
git remote add upstream https://github.com/UPSTREAM-USER/ORIGINAL-PROJECT.git

Verify the new remote named 'upstream'
git remote -v

Whenever you want to update your fork with the latest upstream changes, you’ll need to first fetch the upstream repo’s branches and latest commits to bring them into your repository:

Fetch from upstream remote
git fetch upstream

View all branches, including those from upstream
git branch -va

Now, checkout your own master branch and merge the upstream repo’s master branch:

Checkout your master branch and merge upstream
git checkout master
git merge upstream/master

If there are no unique commits on the local master branch, git will simply perform a fast-forward. However, if you have been making changes on master (in the vast majority of cases you probably shouldn’t be), you may have to deal with conflicts. When doing so, be careful to respect the changes made upstream.

Now, your local master branch is up-to-date with everything modified upstream.

Doing Your Work

Create a Branch

Whenever you begin work on a new feature or bugfix, it’s important that you create a new branch. Not only is it proper git workflow, but it also keeps your changes organized and separated from the master branch so that you can easily submit and manage multiple pull requests for every task you complete.

To create a new branch and start working on it:

Checkout the master branch - you want your new branch to come from master
git checkout master

Create a new branch named newfeature (give your branch its own simple informative name)
git branch newfeature

Switch to your new branch
git checkout newfeature

Now, go to town hacking away and making whatever changes you want to.

Submitting a Pull Request

Cleaning Up Your Work

Prior to submitting your pull request, you might want to do a few things to clean up your branch and make it as simple as possible for the original repo’s maintainer to test, accept, and merge your work.

If any commits have been made to the upstream master branch, you should rebase your development branch so that merging it will be a simple fast-forward that won’t require any conflict resolution work.

Fetch upstream master and merge with your repo's master branch
git fetch upstream
git checkout master
git merge upstream/master

If there were any new commits, rebase your development branch
git checkout newfeature
git rebase master

Now, it may be desirable to squash some of your smaller commits down into a small number of larger more cohesive commits. You can do this with an interactive rebase:

Rebase all commits on your development branch
git checkout
git rebase -i master

This will open up a text editor where you can specify which commits to squash.

Submitting

Once you’ve committed and pushed all of your changes to GitHub, go to the page for your fork on GitHub, select your development branch, and click the pull request button. If you need to make any adjustments to your pull request, just push the updates to GitHub. Your pull request will automatically track the changes on your development branch and update.

Accepting and Merging a Pull Request

Take note that unlike the previous sections which were written from the perspective of someone that created a fork and generated a pull request, this section is written from the perspective of the original repository owner who is handling an incoming pull request. Thus, where the “forker” was referring to the original repository as upstream, we’re now looking at it as the owner of that original repository and the standard origin remote.

Checking Out and Testing Pull Requests

Open up the .git/config file and add a new line under [remote "origin"]:

fetch = +refs/pull/*/head:refs/pull/origin/*

Now you can fetch and checkout any pull request so that you can test them:

Fetch all pull request branches
git fetch origin

Checkout out a given pull request branch based on its number
git checkout -b 999 pull/origin/999

Keep in mind that these branches will be read only and you won’t be able to push any changes.

Automatically Merging a Pull Request

In cases where the merge would be a simple fast-forward, you can automatically do the merge by just clicking the button on the pull request page on GitHub.

Manually Merging a Pull Request

To do the merge manually, you’ll need to checkout the target branch in the source repo, pull directly from the fork, and then merge and push.

Checkout the branch you're merging to in the target repo
git checkout master

Pull the development branch from the fork repo where the pull request development was done.
git pull https://github.com/forkuser/forkedrepo.git newfeature

Merge the development branch
git merge newfeature

Push master with the new feature merged into it
git push origin master

Now that you’re done with the development branch, you’re free to delete it.

`shell
git branch -d newfeature
`

Creating A New Repository

For some contributions it may be required to create a new Curve repository. The Curve repositories [https://github.com/curvefi] aim to employ a consistent code style. In order to make new repositories adhere to this style, there exists a Curve repository template, which should be used.

The template repository can be found here [https://github.com/curvefi/curve-base-repo]. This template already contains dependencies and formatting rules in line with the Curve style guidelines.

Copyright

Copyright 2017, Chase Pettit

MIT License, http://www.opensource.org/licenses/mit-license.php

Additional Reading

	Atlassian - Merging vs. Rebasing [https://www.atlassian.com/git/tutorials/merging-vs-rebasing]

Sources

	GitHub - Fork a Repo [https://help.github.com/articles/fork-a-repo]

	GitHub - Syncing a Fork [https://help.github.com/articles/syncing-a-fork]

	GitHub - Checking Out a Pull Request [https://help.github.com/articles/checking-out-pull-requests-locally]

Testing

Curve development follows a strong testing methodology. While testing Ethereum-based protocols can be challenging, the Curve test suite is a powerful tool that shall be used by contributors to help facilitate this task. While the repositories curve-contract, curve-dao-contracts and curve-pool-registry are all stand alone repositories where each repo employs its own test suite, the test suite designs are very similar.

This section outlines how the test suite should be used most effectively for the curve-contracts repository.

Curve Contracts

Test cases for Curve pools are organized across the following subdirectories [https://github.com/curvefi/curve-contract/tree/master/tests]:

	forked: Tests designed for use in a forked mainnet

	fixtures: Pytest fixtures [https://docs.pytest.org/en/latest/fixture.html]

	pools: Tests for pool contracts

	token: Tests for LP token contracts

	zaps: Tests for deposit contracts

Other files:

	conftest.py [https://github.com/curvefi/curve-contract/blob/master/tests/conftest.py]: Base configuration file for the test suite.

	simulation.py [https://github.com/curvefi/curve-contract/blob/master/tests/simulation.py]: A python model of the math used within Curve’s contracts. Used for testing expected outcomes with actual results.

Organization

	Tests are organized by general category, then split between unitary and integration tests.

	Common tests for all pools are located in tests/pools/common, for zaps in tests/zaps/common.

	Common metapool tests are located at tests/pools/meta, for zaps in tests/zaps/meta.

	Valid pool names are the names of the subdirectories within contracts/pools.

	For pool templates, prepend template- to the subdirectory names within contracts/pool-templates. For example, the base template is template-base.

Pool Type Tests

Note that the test suite targets tests also on a pool type basis. A Curve pool may be of one or more types. The supported pool types are:

	arate: These are aToken-style pools (interest accrues as balance increases)

	crate: These are cToken-style pools (interest accrues as rate increases)

	eth: These are pools that have ETH as one of their tokens

	meta: These are metapools

An example of a pool of a single type would be the aave pool, which is of type arate.

An example of a pool of multiple types would be the steth pool, which is of the types eth and arate.

The type of a pool is given by the key value pair "pool_types": [<POOL_TYPE>, ...] in a pool’s pooldata.json file. If no type is specified, the pool is by default a template-base-style pool.When running tests, the test suit targets pool type-specific tests if they exist. To add a pool type-specific test, place the new test into the pool type subdirectory (e.g., meta for metapool tests).

Pool-specific Tests

There may be pools for which it is required to write multiple tests, which are not applicable to other pools. Rather than using decorators to skip (see below) other pools on an individual or type basis, a new subdirectory named after the pool can be created to contain the pool-specific tests.

When the test suite is started, for a given pool, all tests for the pool’s type get run, as well as any existing pool-specific tests.

For example, assuming there exists a new metapool called foo, specifying "pool_types": ["meta"] in the pool’s pooldata.json would ensure that all metapool tests get run. Let’s assume there is a token in the pool, which has behavior that is currently not captured by any of the meta or common tests that get currently run for the foo pool. To ensure we test the foo pool’s behavior thoroughly, new tests should be created and added in a newly created tests/pools/foo/ subdirectory.

Running the tests

To run the entire suite:

brownie test

Note that this executes over 10,000 tests and may take a significant amount of time to finish.

Test Collection Filters

The test suite is divided into several logical categories. Tests may be filtered using one or more flags:

	--pool <POOL NAME>: only run tests against a specific pool

	--integration: only run integration tests (tests within an integration/ subdirectory)

	--unitary: only run unit tests (tests NOT found in an integration/ subdirectory)

For example, to only run the unit tests for 3pool:

brownie test --pool 3pool --unitary

Testing against a forked mainnet

To run the test suite against a forked mainnet:

brownie test --network mainnet-fork

In this mode, the actual underlying and wrapped coins are used for testing. Note that forked mode can be very slow, especially if you are running against a public node.

Fixtures

Test fixtures are located within the tests/fixture [https://github.com/curvefi/curve-contract/tree/master/tests/fixtures] subdirectory. New fixtures should be added here instead of within the base conftest.py [https://github.com/curvefi/curve-contract/blob/master/tests/conftest.py].

All fixtures are [documented](fixtures/README.md) within the fixtures subdirectory readme.

Markers

We use the following custom markers [https://docs.pytest.org/en/stable/example/markers.html] to parametrize common tests across different pools:

skip_pool(*pools)

Exclude one or more pools from the given test.

@pytest.mark.skip_pool("compound", "usdt", "y")
def test_only_some_pools(swap):
 ...

skip_pool_type(*pool_types)

Exclude specific pool types from the given test.

@pytest.mark.skip_pool_type("meta", "eth")
def test_not_metapools(swap):
 ...

target_pool(*pools)

Only run the given test against one or more pools specified in the marker.

@pytest.mark.target_pool("ren", "sbtc")
def test_btc_pools(swap):
 ...

skip_meta

Exclude metapools from the given test.

@pytest.mark.skip_meta
def test_not_metapools(swap):
 ...

lending

Only run the given test against pools that involve lending.

@pytest.mark.lending
def test_underlying(swap):
 ...

zap

Only run the given test against pools that use a deposit contract.

@pytest.mark.zap
def test_deposits(zap):
 ...

itercoins(*arg, underlying=False)

Parametrizes each of the given arguments with a range of numbers equal to the total number of coins for the given pool. When multiple arguments are given, each argument has a unique value for every generated test.

For example, itercoins("send", "recv") with a pool of 3 coins will parametrize with the sequence [(0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)].

If underlying is set as True, the upper bound of iteration corresponds to the true number of underlying coins. This is useful when testing metapools.

@pytest.mark.itercoins("send", "recv"):
def test_swap(accounts, swap, send, recv):
 swap.exchange(send, recv, 0, 0, {'from': accounts[0]})

Code Style

Vyper Style Guide

This document outlines the Vyper code style, structure and practices followed by the Curve development team.

Note that this guide is still under development. Do not hesitate to ask if anything is missing or unclear.

Project Organization

Contracts should be structured so that components are logically grouped together. Maintaining a consistent order makes it easier for the reader to locate code.

Each logical section should be separated by two blank lines. Within each section, multi-line statements should be seperated by one blank line. Single-line statements should have no blank lines between them, except to denote a logical seperation.

Content should be ordered as follows:

	Import statements [https://vyper.readthedocs.io/en/stable/interfaces.html#importing-interfaces]

	Implements statements [https://vyper.readthedocs.io/en/stable/interfaces.html#implementing-an-interface]

	Inlined interfaces [https://vyper.readthedocs.io/en/stable/interfaces.html#declaring-and-using-interfaces]

	Events [https://vyper.readthedocs.io/en/stable/event-logging.html#declaring-events]

	Structs [https://vyper.readthedocs.io/en/stable/types.html#structs]

	Constants [https://vyper.readthedocs.io/en/stable/constants-and-vars.html#custom-constants]

	Storage variables [https://vyper.readthedocs.io/en/stable/structure-of-a-contract.html#state-variables]

	Constructor function [https://vyper.readthedocs.io/en/stable/control-structures.html#the-init-function]

	Fallback function [https://vyper.readthedocs.io/en/stable/control-structures.html#the-default-function]

	Regular functions [https://vyper.readthedocs.io/en/stable/control-structures.html#functions]

Imports and Interfaces

Contracts must be self contained. Import statements may only be used for built-in interfaces. Other interfaces are always inlined. This aids readability and simplifies the process of source verification on Etherscan.

Inlined interfaces should only include required functions (those that are called within the contract). Interfaces and the functions within should be sorted alphabetically. Each interface should be seperated by one blank line.

Events and Structs

Events and structs should be sorted alphabetically. Each definition should be seperated by one blank line, with two blank lines between the last event and the first struct.

Constants and Storage Variables

Constants should always be defined before storage variables, except when there is a logical reason to group them otherwise. Variable definitions should not be seperated by blank lines, but a single blank line can be used to create logical groupings.

Functions

The constructor function must always be first, followed by the fallback function (if the contract includes one). Regular functions should be logically grouped. Each function should be seperated by two blank lines.

Naming Conventions

Names adhere to PEP 8 [https://www.python.org/dev/peps/pep-0008/#prescriptive-naming-conventions] naming conventions:

	Events, interfaces and structs use the CapWords convention.

	Function names are lowercase, with words separated by underscores when it improves readability. The only exception when adhering to a common interface such as ERC20.

	Constants use all capital letters with underscores separating words.

	Variables follow the same conventions as functions.

Leading Underscores

A single leading underscore marks an object as private or immutable.

	For functions, a leading underscore indicates that the function is internal.

	For variables, a leading underscore is used to indicate that the variable exists in calldata.

Booleans

	Boolean values should be prefixed with is_.

	Booleans must not represent negative properties, (e.g. is_not_set). This can result in double-negative evaluations which are not intuitive for readers.

Code Style

As Vyper is syntactically similar to Python, all code should conform to the PEP 8 [https://www.python.org/dev/peps/pep-0008] style guide with the following exceptions:

	Maximum line length of 100

In general, we try to mimick the same linting process as would be applied by black [https://github.com/psf/black/blob/master/docs/the_black_code_style.md] if the code were Python.

Decorators

Function decorators should be ordered according to mutability [https://vyper.readthedocs.io/en/stable/control-structures.html#mutability], visibility [https://vyper.readthedocs.io/en/stable/control-structures.html#visibility], re-entrancy [https://vyper.readthedocs.io/en/stable/control-structures.html#re-entrancy-locks]:

@view
@external
@nonreentrant('lock')
def foo():

Function Inputs

All input variables should be prepended with a single leading underscore to denote their immutability. The only exception is if the variable name is a single letter (such as i and j for the swap contract exchange methods).

Where possible, the entire function signature should be kept on a single line:

def foo(_goo: address, _bar: uint256, _baz: uint256) -> bool:

If this line would exceed 100 characters, each input argument should instead be placed on a new line and indented:

def multiline_foo(
 _goo: address,
 _bar: uint256,
 _baz: uint256,
) -> bool:

Revert Strings

Revert strings must not exceed a maximum length of 32 characters. They should only be used in functions that are expected to be frequently called by average users. For other situations you should use a dev revert comment [https://eth-brownie.readthedocs.io/en/stable/tests-pytest-intro.html#developer-revert-comments].

Python Style Guide

This document outlines the Python code style, structure and practices followed by the Curve development team.

Note that this guide is still under development. Do not hesitate to ask if anything is missing or unclear.

Linting and Pre-Commit Hooks

We use pre-commit [https://pre-commit.com/] hooks to simplify linting and ensure consistent formatting among contributors. Use of pre-commit is not a requirement, but is highly recommended.

Install pre-commit locally from the brownie root folder:

pip install pre-commit
pre-commit install

Commiting will now automatically run the local hooks and ensure that your commit passes all lint checks.

Naming Conventions

Names must adhere to PEP 8 naming conventions [https://www.python.org/dev/peps/pep-0008/#prescriptive-naming-conventions]:

	Modules have short, all-lowercase names. Underscores can be used in the module name if it improves readability.

	Class names use the CapWords convention.

	Exceptions follow the same conventions as other classes.

	Function names are lowercase, with words separated by underscores when it improves readability.

	Method names and instance variables follow the same conventions as functions.

	Constants use all capital letters with underscores separating words.

Leading Underscores

A single leading underscore marks an object as private.

	Classes and functions with one leading underscore are only used in the module where they are declared. They must not be imported.

	Class attributes and methods with one leading underscore must only be accessed by methods within the same class.

Booleans

	Boolean values should be prefixed with is_.

	Booleans must not represent negative properties, (e.g. is_not_set). This can result in double-negative evaluations which are not intuitive for readers.

	Methods that return a single boolean should use the @property decorator.

Methods

The following conventions should be used when naming functions or methods. Consistent naming provides logical consistency throughout the codebase and makes it easier for future readers to understand what a method does (and does not) do.

	get_: For simple data retrieval without any side effects.

	fetch_: For retreivals that may have some sort of side effect.

	build_: For creation of a new object that is derived from some other data.

	set_: For adding a new value or modifying an existing one within an object.

	add_: For adding a new attribute or other value to an object. Raises an exception if the value already exists.

	replace_: For mutating an object. Should return None on success or raise an exception if something is wrong.

	compare_: For comparing values. Returns True or False, does not raise an exception.

	validate_: Returns None or raises an exception if something is wrong.

	from_: For class methods that instantiate an object based on the given input data.

For other functionality, choose names that clearly communicate intent without being overly verbose. Focus on what the method does, not on how the method does it.

Code Style

All code must conform to the PEP 8 style guide [https://www.python.org/dev/peps/pep-0008] with the following exceptions:

	Maximum line length of 100

We handle code formatting with black [https://github.com/psf/black]. This ensures a consistent style across the project and saves time by not having to be opinionated.

Imports

Import sequencing is handled with isort [https://github.com/timothycrosley/isort]. We follow these additional rules:

Standard Library Imports

Standard libraries should be imported absolutely and without aliasing. Importing the library aids readability, as other users may be familiar with that library.

Good
import os
os.stat('.')

Bad
from os import stat
stat('.')

Strings

Strings substitutions should be performed via formatted string literals [https://docs.python.org/3/reference/lexical_analysis.html#formatted-string-literals] rather than the str.format method or other techniques.

Deployment Addresses

Here is a list of all current contract deployments within the Curve protocol.

Note

If you find an address which is missing or incorrect, feel free to create a pull request as specified here [https://github.com/curvefi/curve-docs].

Base Pools

Base pools in Curve contain two or more tokens and implement the Curve stable swap exchange mechanism [https://www.curve.fi/stableswap-paper.pdf]. Note that for a single base or meta pool there are multiple deployed contracts, which are of the following formats:

	StableSwap<pool>.vy: Curve stablecoin AMM contract

	Deposit<pool>.vy: contract used to wrap underlying tokens prior to depositing them into the pool (not always required)

	CurveContract<version>.vy: LP token contract for the pool

Here is a list of all base pool contracts currently in use:

	Pool

	Source

	Address

	3Pool

	StableSwap3Pool.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/3pool/StableSwap3Pool.vy]

	0xbEbc44782C7dB0a1A60Cb6fe97d0b483032FF1C7 [https://etherscan.io/address/0xbebc44782c7db0a1a60cb6fe97d0b483032ff1c7#code]

	3Pool

	CurveTokenV2.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy]

	0x6c3F90f043a72FA612cbac8115EE7e52BDe6E490 [https://etherscan.io/address/0x6c3F90f043a72FA612cbac8115EE7e52BDe6E490#code]

	AAVE

	CurveTokenV3.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy]

	0xFd2a8fA60Abd58Efe3EeE34dd494cD491dC14900 [https://etherscan.io/address/0xFd2a8fA60Abd58Efe3EeE34dd494cD491dC14900#code]

	AAVE

	StableSwapAave.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/aave/StableSwapAave.vy]

	0xDeBF20617708857ebe4F679508E7b7863a8A8EeE [https://etherscan.io/address/0xDeBF20617708857ebe4F679508E7b7863a8A8EeE#code]

	ankrETH

	StableSwapAETH.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/aeth/StableSwapAETH.vy]

	0xA96A65c051bF88B4095Ee1f2451C2A9d43F53Ae2 [https://etherscan.io/address/0xA96A65c051bF88B4095Ee1f2451C2A9d43F53Ae2#code]

	ankrETH

	CurveTokenV3.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy]

	0xaA17A236F2bAdc98DDc0Cf999AbB47D47Fc0A6Cf [https://etherscan.io/address/0xaA17A236F2bAdc98DDc0Cf999AbB47D47Fc0A6Cf#code]

	BUSD

	StableSwapBUSD.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/busd/StableSwapBUSD.vy]

	0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27 [https://etherscan.io/address/0x79a8C46DeA5aDa233ABaFFD40F3A0A2B1e5A4F27#code]

	BUSD

	DepositBUSD.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/busd/DepositBUSD.vy]

	0xb6c057591E073249F2D9D88Ba59a46CFC9B59EdB [https://etherscan.io/address/0xb6c057591e073249f2d9d88ba59a46cfc9b59edb#code]

	BUSD

	CurveTokenV1.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV1.vy]

	0x3B3Ac5386837Dc563660FB6a0937DFAa5924333B [https://etherscan.io/address/0x3B3Ac5386837Dc563660FB6a0937DFAa5924333B#code]

	Compound

	StableSwapCompound.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/compound/StableSwapCompound.vy]

	0xA2B47E3D5c44877cca798226B7B8118F9BFb7A56 [https://etherscan.io/address/0xA2B47E3D5c44877cca798226B7B8118F9BFb7A56#code]

	Compound

	DepositCompound.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/compound/DepositCompound.vy]

	0xeB21209ae4C2c9FF2a86ACA31E123764A3B6Bc06 [https://etherscan.io/address/0xeb21209ae4c2c9ff2a86aca31e123764a3b6bc06#code]

	Compound

	CurveContractV1.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV1.vy]

	0x845838DF265Dcd2c412A1Dc9e959c7d08537f8a2 [https://etherscan.io/address/0x845838DF265Dcd2c412A1Dc9e959c7d08537f8a2#code]

	EURS

	StableSwapEURS.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/eurs/StableSwapEURS.vy]

	0x0Ce6a5fF5217e38315f87032CF90686C96627CAA [https://etherscan.io/address/0x0Ce6a5fF5217e38315f87032CF90686C96627CAA#code]

	EURS

	CurveTokenV3.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy]

	0x194eBd173F6cDacE046C53eACcE9B953F28411d1 [https://etherscan.io/address/0x194eBd173F6cDacE046C53eACcE9B953F28411d1#code]

	hBTC

	StableSwapHBTC.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/hbtc/StableSwapHBTC.vy]

	0x4CA9b3063Ec5866A4B82E437059D2C43d1be596F [https://etherscan.io/address/0x4CA9b3063Ec5866A4B82E437059D2C43d1be596F#code]

	hBTC

	CurveTokenV2.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy]

	0xb19059ebb43466C323583928285a49f558E572Fd [https://etherscan.io/address/0xb19059ebb43466C323583928285a49f558E572Fd#code]

	IronBank

	StableSwapIB.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/ib/StableSwapIB.vy]

	0x2dded6Da1BF5DBdF597C45fcFaa3194e53EcfeAF [https://etherscan.io/address/0x2dded6Da1BF5DBdF597C45fcFaa3194e53EcfeAF#code]

	IronBank

	CurveTokenV3.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy]

	0x5282a4eF67D9C33135340fB3289cc1711c13638C [https://etherscan.io/address/0x5282a4eF67D9C33135340fB3289cc1711c13638C#code]

	Link

	StableSwapLINK.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/link/StableSwapLINK.vy]

	0xF178C0b5Bb7e7aBF4e12A4838C7b7c5bA2C623c0 [https://etherscan.io/address/0xF178C0b5Bb7e7aBF4e12A4838C7b7c5bA2C623c0#code]

	Link

	CurveTokenV3.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy]

	0xcee60cfa923170e4f8204ae08b4fa6a3f5656f3a [https://etherscan.io/address/0xcee60cfa923170e4f8204ae08b4fa6a3f5656f3a#code]

	PAX

	DepositPax.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/pax/DepositPax.vy]

	0xA50cCc70b6a011CffDdf45057E39679379187287 [https://etherscan.io/address/0xa50ccc70b6a011cffddf45057e39679379187287#code]

	PAX

	StableSwapPax.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/pax/StableSwapPax.vy]

	0x06364f10B501e868329afBc005b3492902d6C763 [https://etherscan.io/address/0x06364f10B501e868329afBc005b3492902d6C763#code]

	PAX

	CurveTokenV1.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV1.vy]

	0xD905e2eaeBe188fc92179b6350807D8bd91Db0D8 [https://etherscan.io/address/0xD905e2eaeBe188fc92179b6350807D8bd91Db0D8#code]

	renBTC

	StableSwapRen.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/ren/StableSwapRen.vy]

	0x93054188d876f558f4a66B2EF1d97d16eDf0895B [https://etherscan.io/address/0x93054188d876f558f4a66B2EF1d97d16eDf0895B#code]

	renBTC

	CurveTokenV1.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV1.vy]

	0x49849C98ae39Fff122806C06791Fa73784FB3675 [https://etherscan.io/address/0x49849C98ae39Fff122806C06791Fa73784FB3675#code]

	rETH

	StableSwapRETH.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/reth/StableSwapRETH.vy]

	0xF9440930043eb3997fc70e1339dBb11F341de7A8 [https://etherscan.io/address/0xF9440930043eb3997fc70e1339dBb11F341de7A8#code]

	rETH

	CurveTokenV3.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy]

	0x53a901d48795C58f485cBB38df08FA96a24669D5 [https://etherscan.io/address/0x53a901d48795C58f485cBB38df08FA96a24669D5#code]

	sAAVE

	StableSwapSAAVE.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/saave/StableSwapSAAVE.vy]

	0xEB16Ae0052ed37f479f7fe63849198Df1765a733 [https://etherscan.io/address/0xeb16ae0052ed37f479f7fe63849198df1765a733#code]

	sAAVE

	CurveTokenV3.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy]

	0x02d341CcB60fAaf662bC0554d13778015d1b285C [https://etherscan.io/address/0x02d341CcB60fAaf662bC0554d13778015d1b285C#code]

	sBTC

	StableSwapSBTC.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/sbtc/StableSwapSBTC.vy]

	0x7fC77b5c7614E1533320Ea6DDc2Eb61fa00A9714 [https://etherscan.io/address/0x7fC77b5c7614E1533320Ea6DDc2Eb61fa00A9714#code]

	sBTC

	CurveTokenV1.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV1.vy]

	0x075b1bb99792c9E1041bA13afEf80C91a1e70fB3 [https://etherscan.io/address/0x075b1bb99792c9E1041bA13afEf80C91a1e70fB3#code]

	sETH

	StableSwapSETH.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/seth/StableSwapSETH.vy]

	0xc5424B857f758E906013F3555Dad202e4bdB4567 [https://etherscan.io/address/0xc5424b857f758e906013f3555dad202e4bdb4567#code]

	sETH

	CurveTokenV3.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy]

	0xA3D87FffcE63B53E0d54fAa1cc983B7eB0b74A9c [https://etherscan.io/address/0xA3D87FffcE63B53E0d54fAa1cc983B7eB0b74A9c#code]

	stETH

	StableSwapSTETH.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/steth/StableSwapSTETH.vy]

	0xDC24316b9AE028F1497c275EB9192a3Ea0f67022 [https://etherscan.io/address/0xDC24316b9AE028F1497c275EB9192a3Ea0f67022#code]

	stETH

	CurveTokenV3.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy]

	0x06325440D014e39736583c165C2963BA99fAf14E [https://etherscan.io/address/0x06325440D014e39736583c165C2963BA99fAf14E#code]

	sUSD

	DepositSUSD.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/susd/DepositSUSD.vy]

	0xFCBa3E75865d2d561BE8D220616520c171F12851 [https://etherscan.io/address/0xfcba3e75865d2d561be8d220616520c171f12851#code]

	sUSD

	StableSwapSUSD.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/susd/StableSwapSUSD.vy]

	0xA5407eAE9Ba41422680e2e00537571bcC53efBfD [https://etherscan.io/address/0xA5407eAE9Ba41422680e2e00537571bcC53efBfD#code]

	sUSD

	CurveTokenV1.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV1.vy]

	0xC25a3A3b969415c80451098fa907EC722572917F [https://etherscan.io/address/0xC25a3A3b969415c80451098fa907EC722572917F#code]

	TriCrypto

	CurveCryptoSwap.vy [https://github.com/curvefi/curve-crypto-contract/blob/master/contracts/CurveCryptoSwap.vy]

	0x80466c64868E1ab14a1Ddf27A676C3fcBE638Fe5 [https://etherscan.io/address/0x80466c64868E1ab14a1Ddf27A676C3fcBE638Fe5#code]

	TriCrypto

	DepositZap.vy [https://github.com/curvefi/curve-crypto-contract/blob/master/contracts/DepositZap.vy]

	0x331aF2E331bd619DefAa5DAc6c038f53FCF9F785 [https://etherscan.io/address/0x331aF2E331bd619DefAa5DAc6c038f53FCF9F785#code]

	TriCrypto

	CurveTokenV4.vy [https://github.com/curvefi/curve-crypto-contract/blob/master/contracts/CurveTokenV4.vy]

	0xcA3d75aC011BF5aD07a98d02f18225F9bD9A6BDF [https://etherscan.io/address/0xcA3d75aC011BF5aD07a98d02f18225F9bD9A6BDF#code]

	USDT

	DepositUSDT.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/usdt/DepositUSDT.vy]

	0xac795D2c97e60DF6a99ff1c814727302fD747a80 [https://etherscan.io/address/0xac795d2c97e60df6a99ff1c814727302fd747a80#code]

	USDT

	StableSwapUSDT.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/usdt/StableSwapUSDT.vy]

	0x52EA46506B9CC5Ef470C5bf89f17Dc28bB35D85C [https://etherscan.io/address/0x52EA46506B9CC5Ef470C5bf89f17Dc28bB35D85C#code]

	USDT

	CurveTokenV1.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV1.vy]

	0x9fC689CCaDa600B6DF723D9E47D84d76664a1F23 [https://etherscan.io/address/0x9fC689CCaDa600B6DF723D9E47D84d76664a1F23#code]

	Y

	DepositY.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/y/DepositY.vy]

	0xbBC81d23Ea2c3ec7e56D39296F0cbB648873a5d3 [https://etherscan.io/address/0xbbc81d23ea2c3ec7e56d39296f0cbb648873a5d3#code]

	Y

	StableSwapY.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/y/StableSwapY.vy]

	0x45F783CCE6B7FF23B2ab2D70e416cdb7D6055f51 [https://etherscan.io/address/0x45F783CCE6B7FF23B2ab2D70e416cdb7D6055f51#code]

	Y

	CurveTokenV1.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV1.vy]

	0xdF5e0e81Dff6FAF3A7e52BA697820c5e32D806A8 [https://etherscan.io/address/0xdF5e0e81Dff6FAF3A7e52BA697820c5e32D806A8#code]

	Yv2

	StableSwapYv2.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/yv2/StableSwapYv2.vy]

	0x8925D9d9B4569D737a48499DeF3f67BaA5a144b9 [https://etherscan.io/address/0x8925D9d9B4569D737a48499DeF3f67BaA5a144b9#code]

	Yv2

	CurveTokenV3.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy]

	0x571FF5b7b346F706aa48d696a9a4a288e9Bb4091 [https://etherscan.io/address/0x571FF5b7b346F706aa48d696a9a4a288e9Bb4091#code]

MetaPools

Metapools allow for one token to seemingly trade with another underlying base pool. For instance, the GUSD metapool ([GUSD, [3Pool]]) contains GUSD and LP tokens of the 3pool (3CRV). This allows for trades between GUSD and any of the three tokens from the 3Pool (DAI, USDC and USDT).

Here is a list of all meta pools currently in use:

	Pool

	Source

	Address

	bBTC

	StableSwapBBTC.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/bbtc/StableSwapBBTC.vy]

	0x071c661B4DeefB59E2a3DdB20Db036821eeE8F4b [https://etherscan.io/address/0x071c661B4DeefB59E2a3DdB20Db036821eeE8F4b#code]

	bBTC

	DepositBBTC.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/bbtc/DepositBBTC.vy]

	0xC45b2EEe6e09cA176Ca3bB5f7eEe7C47bF93c756 [https://etherscan.io/address/0xC45b2EEe6e09cA176Ca3bB5f7eEe7C47bF93c756#code]

	bBTC

	CurveTokenV3.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy]

	0x410e3E86ef427e30B9235497143881f717d93c2A [https://etherscan.io/address/0x410e3E86ef427e30B9235497143881f717d93c2A#code]

	DUSD

	DepositDUSD.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/dusd/DepositDUSD.vy]

	0x61E10659fe3aa93d036d099405224E4Ac24996d0 [https://etherscan.io/address/0x61E10659fe3aa93d036d099405224E4Ac24996d0#code]

	DUSD

	StableSwapDUSD.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/dusd/StableSwapDUSD.vy]

	0x8038C01A0390a8c547446a0b2c18fc9aEFEcc10c [https://etherscan.io/address/0x8038C01A0390a8c547446a0b2c18fc9aEFEcc10c#code]

	DUSD

	CurveTokenV2.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy]

	0x3a664Ab939FD8482048609f652f9a0B0677337B9 [https://etherscan.io/address/0x3a664Ab939FD8482048609f652f9a0B0677337B9#code]

	GUSD

	StableSwapGUSD.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/gusd/StableSwapGUSD.vy]

	0x4f062658EaAF2C1ccf8C8e36D6824CDf41167956 [https://etherscan.io/address/0x4f062658EaAF2C1ccf8C8e36D6824CDf41167956]

	GUSD

	DepositGUSD.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/gusd/DepositGUSD.vy]

	0x64448B78561690B70E17CBE8029a3e5c1bB7136e [https://etherscan.io/address/0x64448B78561690B70E17CBE8029a3e5c1bB7136e#code]

	GUSD

	CurveTokenV2.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy]

	0xD2967f45c4f384DEEa880F807Be904762a3DeA07 [https://etherscan.io/address/0xD2967f45c4f384DEEa880F807Be904762a3DeA07#code]

	HUSD

	DepositHUSD.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/husd/DepositHUSD.vy]

	0x09672362833d8f703D5395ef3252D4Bfa51c15ca [https://etherscan.io/address/0x09672362833d8f703D5395ef3252D4Bfa51c15ca#code]

	HUSD

	StableSwapHUSD.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/husd/StableSwapHUSD.vy]

	0x3eF6A01A0f81D6046290f3e2A8c5b843e738E604 [https://etherscan.io/address/0x3eF6A01A0f81D6046290f3e2A8c5b843e738E604#code]

	HUSD

	CurveTokenV2.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy]

	0x5B5CFE992AdAC0C9D48E05854B2d91C73a003858 [https://etherscan.io/address/0x5B5CFE992AdAC0C9D48E05854B2d91C73a003858#code]

	LinkUSD

	DepositLinkUSD.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/linkusd/DepositLinkUSD.vy]

	0x1de7f0866e2c4adAC7b457c58Cc25c8688CDa1f2 [https://etherscan.io/address/0x1de7f0866e2c4adAC7b457c58Cc25c8688CDa1f2#code]

	LinkUSD

	StableSwapLinkUSD.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/linkusd/StableSwapLinkUSD.vy]

	0xE7a24EF0C5e95Ffb0f6684b813A78F2a3AD7D171 [https://etherscan.io/address/0xE7a24EF0C5e95Ffb0f6684b813A78F2a3AD7D171#code]

	LinkUSD

	CurveTokenV2.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy]

	0x6D65b498cb23deAba52db31c93Da9BFFb340FB8F [https://etherscan.io/address/0x6D65b498cb23deAba52db31c93Da9BFFb340FB8F#code]

	MUSD

	DepositMUSD.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/musd/DepositMUSD.vy]

	0x803A2B40c5a9BB2B86DD630B274Fa2A9202874C2 [https://etherscan.io/address/0x803A2B40c5a9BB2B86DD630B274Fa2A9202874C2#code]

	MUSD

	StableSwapMUSD.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/musd/StableSwapMUSD.vy]

	0x8474DdbE98F5aA3179B3B3F5942D724aFcdec9f6 [https://etherscan.io/address/0x8474DdbE98F5aA3179B3B3F5942D724aFcdec9f6#code]

	MUSD

	CurveTokenV2.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy]

	0x1AEf73d49Dedc4b1778d0706583995958Dc862e6 [https://etherscan.io/address/0x1AEf73d49Dedc4b1778d0706583995958Dc862e6#code]

	oBTC

	DepositOBTC.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/obtc/DepositOBTC.vy]

	0xd5BCf53e2C81e1991570f33Fa881c49EEa570C8D [https://etherscan.io/address/0xd5BCf53e2C81e1991570f33Fa881c49EEa570C8D#code]

	oBTC

	StableSwapOBTC.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/obtc/StableSwapOBTC.vy]

	0xd81dA8D904b52208541Bade1bD6595D8a251F8dd [https://etherscan.io/address/0xd81dA8D904b52208541Bade1bD6595D8a251F8dd#code]

	oBTC

	CurveTokenV3.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy]

	0x2fE94ea3d5d4a175184081439753DE15AeF9d614 [https://etherscan.io/address/0x2fE94ea3d5d4a175184081439753DE15AeF9d614#code]

	pBTC

	DepositPBTC.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/pbtc/DepositPBTC.vy]

	0x11F419AdAbbFF8d595E7d5b223eee3863Bb3902C [https://etherscan.io/address/0x11F419AdAbbFF8d595E7d5b223eee3863Bb3902C#code]

	pBTC

	StableSwapPBTC.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/pbtc/StableSwapPBTC.vy]

	0x7F55DDe206dbAD629C080068923b36fe9D6bDBeF [https://etherscan.io/address/0x7F55DDe206dbAD629C080068923b36fe9D6bDBeF#code]

	pBTC

	CurveTokenV2.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy]

	0xDE5331AC4B3630f94853Ff322B66407e0D6331E8 [https://etherscan.io/address/0xDE5331AC4B3630f94853Ff322B66407e0D6331E8#code]

	RSV

	DepositRSV.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/rsv/DepositRSV.vy]

	0xBE175115BF33E12348ff77CcfEE4726866A0Fbd5 [https://etherscan.io/address/0xBE175115BF33E12348ff77CcfEE4726866A0Fbd5#code]

	RSV

	StableSwapRSV.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/rsv/StableSwapRSV.vy]

	0xC18cC39da8b11dA8c3541C598eE022258F9744da [https://etherscan.io/address/0xC18cC39da8b11dA8c3541C598eE022258F9744da#code]

	RSV

	CurveTokenV2.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy]

	0xC2Ee6b0334C261ED60C72f6054450b61B8f18E35 [https://etherscan.io/address/0xC2Ee6b0334C261ED60C72f6054450b61B8f18E35#code]

	tBTC

	DepositTBTC.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/tbtc/DepositTBTC.vy]

	0xaa82ca713D94bBA7A89CEAB55314F9EfFEdDc78c [https://etherscan.io/address/0xaa82ca713D94bBA7A89CEAB55314F9EfFEdDc78c#code]

	tBTC

	StableSwapTBTC.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/tbtc/StableSwapTBTC.vy]

	0xC25099792E9349C7DD09759744ea681C7de2cb66 [https://etherscan.io/address/0xC25099792E9349C7DD09759744ea681C7de2cb66#code]

	tBTC

	CurveTokenV2.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy]

	0x64eda51d3Ad40D56b9dFc5554E06F94e1Dd786Fd [https://etherscan.io/address/0x64eda51d3Ad40D56b9dFc5554E06F94e1Dd786Fd#code]

	USDK

	DepositUSDK.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/usdk/DepositUSDK.vy]

	0xF1f85a74AD6c64315F85af52d3d46bF715236ADc [https://etherscan.io/address/0xF1f85a74AD6c64315F85af52d3d46bF715236ADc#code]

	USDK

	StableSwapUSDK.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/usdk/StableSwapUSDK.vy]

	0x3E01dD8a5E1fb3481F0F589056b428Fc308AF0Fb [https://etherscan.io/address/0x3E01dD8a5E1fb3481F0F589056b428Fc308AF0Fb#code]

	USDK

	CurveTokenV2.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy]

	0x97E2768e8E73511cA874545DC5Ff8067eB19B787 [https://etherscan.io/address/0x97E2768e8E73511cA874545DC5Ff8067eB19B787#code]

	USDN

	DepositUSDN.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/usdn/DepositUSDN.vy]

	0x094d12e5b541784701FD8d65F11fc0598FBC6332 [https://etherscan.io/address/0x094d12e5b541784701FD8d65F11fc0598FBC6332#code]

	USDN

	StableSwapUSDN.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/usdn/StableSwapUSDN.vy]

	0x0f9cb53Ebe405d49A0bbdBD291A65Ff571bC83e1 [https://etherscan.io/address/0x0f9cb53Ebe405d49A0bbdBD291A65Ff571bC83e1#code]

	USDN

	CurveTokenV2.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV2.vy]

	0x4f3E8F405CF5aFC05D68142F3783bDfE13811522 [https://etherscan.io/address/0x4f3E8F405CF5aFC05D68142F3783bDfE13811522#code]

	USDP

	DepositUSDP.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/usdp/DepositUSDP.vy]

	0x3c8cAee4E09296800f8D29A68Fa3837e2dae4940 [https://etherscan.io/address/0x3c8cAee4E09296800f8D29A68Fa3837e2dae4940#code]

	USDP

	StableSwapUSDP.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/usdp/StableSwapUSDP.vy]

	0x42d7025938bEc20B69cBae5A77421082407f053A [https://etherscan.io/address/0x42d7025938bEc20B69cBae5A77421082407f053A#code]

	USDP

	CurveTokenV3.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy]

	0x7Eb40E450b9655f4B3cC4259BCC731c63ff55ae6 [https://etherscan.io/address/0x7Eb40E450b9655f4B3cC4259BCC731c63ff55ae6#code]

	UST

	DepositUST.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/ust/DepositUST.vy]

	0xB0a0716841F2Fc03fbA72A891B8Bb13584F52F2d [https://etherscan.io/address/0xB0a0716841F2Fc03fbA72A891B8Bb13584F52F2d#code]

	UST

	StableSwapUST.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/pools/ust/StableSwapUST.vy]

	0x890f4e345B1dAED0367A877a1612f86A1f86985f [https://etherscan.io/address/0x890f4e345B1dAED0367A877a1612f86A1f86985f#code]

	UST

	CurveTokenV3.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/tokens/CurveTokenV3.vy]

	0x94e131324b6054c0D789b190b2dAC504e4361b53 [https://etherscan.io/address/0x94e131324b6054c0D789b190b2dAC504e4361b53#code]

Liquidity Gauges

Liquidity Gauges are used to stake LP tokens and handle distribution of the CRV governance token and are part of the Curve DAO.

Here is a list of all liquidity gauges currently in use:

	Gauge

	Source

	Address

	3pool

	LiquidityGauge.sol [https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGauge.vy]

	0xbFcF63294aD7105dEa65aA58F8AE5BE2D9d0952A [https://etherscan.io/address/0xbFcF63294aD7105dEa65aA58F8AE5BE2D9d0952A#code]

	AAVE

	LiquidityGaugeV2.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy]

	0xd662908ADA2Ea1916B3318327A97eB18aD588b5d [https://etherscan.io/address/0xd662908ADA2Ea1916B3318327A97eB18aD588b5d#code]

	alUSD

	LiquidityGaugeV3.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV3.vy]

	0x9582C4ADACB3BCE56Fea3e590F05c3ca2fb9C477 [https://etherscan.io/address/0x9582C4ADACB3BCE56Fea3e590F05c3ca2fb9C477#code]

	ankrETH

	LiquidityGaugeV2.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy]

	0x6d10ed2cF043E6fcf51A0e7b4C2Af3Fa06695707 [https://etherscan.io/address/0x6d10ed2cF043E6fcf51A0e7b4C2Af3Fa06695707#code]

	bBTC

	LiquidityGaugeV2.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy]

	0xdFc7AdFa664b08767b735dE28f9E84cd30492aeE [https://etherscan.io/address/0xdFc7AdFa664b08767b735dE28f9E84cd30492aeE#code]

	BUSD

	LiquidityGauge.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGauge.vy]

	0x69Fb7c45726cfE2baDeE8317005d3F94bE838840 [https://etherscan.io/address/0x69Fb7c45726cfE2baDeE8317005d3F94bE838840#code]

	Compound

	LiquidityGauge.sol [https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGauge.vy]

	0x7ca5b0a2910B33e9759DC7dDB0413949071D7575 [https://etherscan.io/address/0x7ca5b0a2910B33e9759DC7dDB0413949071D7575#code]

	DUSD

	LiquidityGaugeReward.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGaugeReward.vy]

	0xAEA6c312f4b3E04D752946d329693F7293bC2e6D [https://etherscan.io/address/0xAEA6c312f4b3E04D752946d329693F7293bC2e6D#code]

	EURS

	LiquidityGaugeV2.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy]

	0x90Bb609649E0451E5aD952683D64BD2d1f245840 [https://etherscan.io/address/0x90Bb609649E0451E5aD952683D64BD2d1f245840#code]

	FRAX

	LiquidityGaugeV2.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy]

	0x72e158d38dbd50a483501c24f792bdaaa3e7d55c [https://etherscan.io/address/0x72e158d38dbd50a483501c24f792bdaaa3e7d55c#code]

	GUSD

	LiquidityGauge.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGauge.vy]

	0xC5cfaDA84E902aD92DD40194f0883ad49639b023 [https://etherscan.io/address/0xC5cfaDA84E902aD92DD40194f0883ad49639b023#code]

	hBTC

	LiquidityGauge.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGauge.vy]

	0x4c18E409Dc8619bFb6a1cB56D114C3f592E0aE79 [https://etherscan.io/address/0x4c18E409Dc8619bFb6a1cB56D114C3f592E0aE79#code]

	HUSD

	LiquidityGauge.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGauge.vy]

	0x2db0E83599a91b508Ac268a6197b8B14F5e72840 [https://etherscan.io/address/0x2db0E83599a91b508Ac268a6197b8B14F5e72840#code]

	MUSD

	LiquidityGaugeReward.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGaugeReward.vy]

	0x5f626c30EC1215f4EdCc9982265E8b1F411D1352 [https://etherscan.io/address/0x5f626c30EC1215f4EdCc9982265E8b1F411D1352#code]

	oBTC

	LiquidityGaugeV2.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy]

	0x11137B10C210b579405c21A07489e28F3c040AB1 [https://etherscan.io/address/0x11137B10C210b579405c21A07489e28F3c040AB1#code]

	PAX

	LiquidityGauge.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGauge.vy]

	0x64E3C23bfc40722d3B649844055F1D51c1ac041d [https://etherscan.io/address/0x64E3C23bfc40722d3B649844055F1D51c1ac041d#code]

	IronBank

	LiquidityGaugeV2.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy]

	0xF5194c3325202F456c95c1Cf0cA36f8475C1949F [https://etherscan.io/address/0xF5194c3325202F456c95c1Cf0cA36f8475C1949F#code]

	Link

	LiquidityGaugeV2.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy]

	0xFD4D8a17df4C27c1dD245d153ccf4499e806C87D [https://etherscan.io/address/0xFD4D8a17df4C27c1dD245d153ccf4499e806C87D#code]

	pBTC

	LiquidityGaugeV2.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy]

	0xd7d147c6Bb90A718c3De8C0568F9B560C79fa416 [https://etherscan.io/address/0xd7d147c6Bb90A718c3De8C0568F9B560C79fa416#code]

	renBTC

	LiquidityGauge.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGauge.vy]

	0xB1F2cdeC61db658F091671F5f199635aEF202CAC [https://etherscan.io/address/0xB1F2cdeC61db658F091671F5f199635aEF202CAC#code]

	RSV

	LiquidityGaugeReward.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGaugeReward.vy]

	0x4dC4A289a8E33600D8bD4cf5F6313E43a37adec7 [https://etherscan.io/address/0x4dC4A289a8E33600D8bD4cf5F6313E43a37adec7#code]

	sAAVE

	LiquidityGaugeV2.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy]

	0x462253b8F74B72304c145DB0e4Eebd326B22ca39 [https://etherscan.io/address/0x462253b8F74B72304c145DB0e4Eebd326B22ca39#code]

	sBTC

	LiquidityGaugeReward.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGaugeReward.vy]

	0x705350c4BcD35c9441419DdD5d2f097d7a55410F [https://etherscan.io/address/0x705350c4BcD35c9441419DdD5d2f097d7a55410F#code]

	sETH

	LiquidityGaugeV2.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy]

	0x3C0FFFF15EA30C35d7A85B85c0782D6c94e1d238 [https://etherscan.io/address/0x3C0FFFF15EA30C35d7A85B85c0782D6c94e1d238#code]

	stETH

	LiquidityGaugeV2.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy]

	0x182B723a58739a9c974cFDB385ceaDb237453c28 [https://etherscan.io/address/0x182B723a58739a9c974cFDB385ceaDb237453c28#code]

	sUSDv2

	LiquidityGaugeReward.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGaugeReward.vy]

	0xA90996896660DEcC6E997655E065b23788857849 [https://etherscan.io/address/0xA90996896660DEcC6E997655E065b23788857849#code]

	rETH

	LiquidityGaugeV3.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV3.vy]

	0x824F13f1a2F29cFEEa81154b46C0fc820677A637 [https://etherscan.io/address/0x824F13f1a2F29cFEEa81154b46C0fc820677A637#code]

	tBTC

	LiquidityGaugeReward.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGaugeReward.vy]

	0x6828bcF74279eE32f2723eC536c22c51Eed383C6 [https://etherscan.io/address/0x6828bcF74279eE32f2723eC536c22c51Eed383C6#code]

	TriCrypto

	LiquidityGaugeV3.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV3.vy]

	0x6955a55416a06839309018A8B0cB72c4DDC11f15 [https://etherscan.io/address/0x6955a55416a06839309018A8B0cB72c4DDC11f15#code]

	USDK

	LiquidityGauge.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGauge.vy]

	0xC2b1DF84112619D190193E48148000e3990Bf627 [https://etherscan.io/address/0xC2b1DF84112619D190193E48148000e3990Bf627#code]

	USDN

	LiquidityGauge.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGauge.vy]

	0xF98450B5602fa59CC66e1379DFfB6FDDc724CfC4 [https://etherscan.io/address/0xF98450B5602fa59CC66e1379DFfB6FDDc724CfC4#code]

	USDP

	LiquidityGaugeV2.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy]

	0x055be5DDB7A925BfEF3417FC157f53CA77cA7222 [https://etherscan.io/address/0x055be5DDB7A925BfEF3417FC157f53CA77cA7222#code]

	USDT

	LiquidityGauge.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGauge.vy]

	0xBC89cd85491d81C6AD2954E6d0362Ee29fCa8F53 [https://etherscan.io/address/0xBC89cd85491d81C6AD2954E6d0362Ee29fCa8F53#code]

	UST

	LiquidityGaugeV2.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy]

	0x3B7020743Bc2A4ca9EaF9D0722d42E20d6935855 [https://etherscan.io/address/0x3B7020743Bc2A4ca9EaF9D0722d42E20d6935855#code]

	Y

	LiquidityGauge.vy [https://github.com/curvefi/curve-contract/blob/master/contracts/gauges/LiquidityGauge.vy]

	0xFA712EE4788C042e2B7BB55E6cb8ec569C4530c1 [https://etherscan.io/address/0xFA712EE4788C042e2B7BB55E6cb8ec569C4530c1#code]

	Yv2

	LiquidityGaugeV2.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/LiquidityGaugeV2.vy]

	0x8101E6760130be2C8Ace79643AB73500571b7162 [https://etherscan.io/address/0x8101E6760130be2C8Ace79643AB73500571b7162#code]

Curve DAO

Curve DAO consists of multiple smart contracts connected by Aragon [https://github.com/aragon/aragonOS]. Interaction with Aragon occurs through a modified implementation [https://github.com/curvefi/curve-aragon-voting] of the Aragon Voting App [https://github.com/aragon/aragon-apps/tree/master/apps/voting]. Aragon’s standard one token, one vote method is replaced with a weighting system based on locking tokens. Curve DAO has a token (CRV) which is used for both governance and value accrual.

View the documentation [https://github.com/curvefi/curve-dao-contracts/blob/master/doc/readme.pdf] for an in-depth overview of how the Curve DAO works.

Here is a list of contract deployments that are used in the Curve DAO:

	Name

	Source

	Address

	CRV Token

	ERC20CRV.sol [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/ERC20CRV.vy]

	0xD533a949740bb3306d119CC777fa900bA034cd52 [https://etherscan.io/address/0xD533a949740bb3306d119CC777fa900bA034cd52#code]

	Fee Distributor

	FeeDistributor.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/FeeDistributor.vy]

	0xA464e6DCda8AC41e03616F95f4BC98a13b8922Dc [https://etherscan.io/address/0xA464e6DCda8AC41e03616F95f4BC98a13b8922Dc#code]

	Gauge Controller

	GaugeController.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/GaugeController.vy]

	0x2F50D538606Fa9EDD2B11E2446BEb18C9D5846bB [https://etherscan.io/address/0x2F50D538606Fa9EDD2B11E2446BEb18C9D5846bB#code]

	Minter

	Minter.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/Minter.vy]

	0xd061D61a4d941c39E5453435B6345Dc261C2fcE0 [https://etherscan.io/address/0xd061D61a4d941c39E5453435B6345Dc261C2fcE0#code]

	Voting Escrow

	VotingEscrow.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/VotingEscrow.vy]

	0x5f3b5DfEb7B28CDbD7FAba78963EE202a494e2A2 [https://etherscan.io/address/0x5f3b5DfEb7B28CDbD7FAba78963EE202a494e2A2#code]

	Vesting Escrow

	VestingEscrow.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/VestingEscrow.vy]

	0x575ccd8e2d300e2377b43478339e364000318e2c [https://etherscan.io/address/0x575ccd8e2d300e2377b43478339e364000318e2c#code]

Ownership Proxies

The following contracts allow DAO ownership of the core Curve AMM contracts:

	Name

	Source

	Address

	Gauge Owner

	GaugeProxy.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/GaugeProxy.vy]

	0x519AFB566c05E00cfB9af73496D00217A630e4D5 [https://etherscan.io/address/0x519AFB566c05E00cfB9af73496D00217A630e4D5#code]

	Pool Owner

	PoolProxy.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/PoolProxy.vy]

	0xeCb456EA5365865EbAb8a2661B0c503410e9B347 [https://etherscan.io/address/0xeCb456EA5365865EbAb8a2661B0c503410e9B347#code]

	Crypto Pool Owner

	CryptoPoolProxy.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/CryptoPoolProxy.vy]

	0x3687367CcAEBBE89f1bc8Eae7592b4Eed44Ac0Bd [https://etherscan.io/address/0x3687367ccaebbe89f1bc8eae7592b4eed44ac0bd]

	Factory Pool Owner

	OwnerProxy.vy [https://github.com/curvefi/curve-factory/blob/master/contracts/OwnerProxy.vy]

	0x8cf8af108b3b46ddc6ad596aebb917e053f0d72b [https://etherscan.io/address/0x8cf8af108b3b46ddc6ad596aebb917e053f0d72b]

Aragon

Main documentation: Curve DAO: Governance

Voting App

Aragon Voting App [https://wiki.aragon.org/archive/dev/apps/voting/] deployments are the main entry points used to create new votes, vote, checking the status of a vote, and execute a successful vote.

	Vote Type

	Address

	Ownership

	0xE478de485ad2fe566d49342Cbd03E49ed7DB3356 [https://etherscan.io/address/0xe478de485ad2fe566d49342cbd03e49ed7db3356]

	Parameter

	0xBCfF8B0b9419b9A88c44546519b1e909cF330399 [https://etherscan.io/address/0xbcff8b0b9419b9a88c44546519b1e909cf330399]

	Emergency

	0x1115c9b3168563354137cDc60efb66552dd50678 [https://etherscan.io/address/0x1115c9b3168563354137cdc60efb66552dd50678]

Agent

Aragon Agent [https://hack.aragon.org/docs/guides-use-agent] deployments correspond to the different owner accounts within the DAO. Contract calls made as a result of a successful vote will execute from these addresses. When deploying new contracts, these addresses should be given appropriate access to admin functionality.

	Vote Type

	Address

	Ownership

	0x40907540d8a6c65c637785e8f8b742ae6b0b9968 [https://etherscan.io/address/0x40907540d8a6c65c637785e8f8b742ae6b0b9968]

	Parameter

	0x4eeb3ba4f221ca16ed4a0cc7254e2e32df948c5f [https://etherscan.io/address/0x4eeb3ba4f221ca16ed4a0cc7254e2e32df948c5f]

	Emergency

	0x00669DF67E4827FCc0E48A1838a8d5AB79281909 [https://etherscan.io/address/0x00669DF67E4827FCc0E48A1838a8d5AB79281909]

Tokens

The following token addresses are used for determining voter weights within Curve’s Aragon DAOs.

	Vote Type

	Address

	Ownership / Parameter

	0x5f3b5DfEb7B28CDbD7FAba78963EE202a494e2A2 [https://etherscan.io/address/0x5f3b5DfEb7B28CDbD7FAba78963EE202a494e2A2]

	Emergency

	0x4c0947B16FB1f755A2D32EC21A0c4181f711C500 [https://etherscan.io/address/0x4c0947B16FB1f755A2D32EC21A0c4181f711C500]

Fee Burners

Burners are a fundamental component of the fee payout mechanism in Curve. A burner converts collected pool fees to an asset which can be converted to USDC. Ultimately, the exchanged for USDC is deposited to the 3Pool, as fees are paid out in 3CRV to veCRV holders. Depending on which tokens a pool contains, a specific burner implementation is used.

Here is a list of all burner contracts currently in use:

	Gauge

	Source

	Address

	ABurner

	ABurner.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/burners/ABurner.vy]

	0x12220a63a2013133d54558c9d03c35288eac9b34 [https://etherscan.io/address/0x12220a63a2013133d54558c9d03c35288eac9b34#code]

	CryptoLPBurner

	CryptoLPBurner.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/burners/CryptoLPBurner.vy]

	0x0B5B9210d5015fD0c97FB19B32675b19703b0453 [https://etherscan.io/address/0x0B5B9210d5015fD0c97FB19B32675b19703b0453#code]

	CBurner

	CBurner.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/burners/CBurner.vy]

	0xdd0e10857d952c73b2fa39ce86308299df8774b8 [https://etherscan.io/address/0xdd0e10857d952c73b2fa39ce86308299df8774b8#code]

	LPBurner

	LPBurner.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/burners/LPBurner.vy]

	0xaa42C0CD9645A58dfeB699cCAeFBD30f19B1ff81 [https://etherscan.io/address/0xaa42C0CD9645A58dfeB699cCAeFBD30f19B1ff81#code]

	MetaBurner

	MetaBurner.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/burners/MetaBurner.vy]

	0xE4b65889469ad896e866331f0AB5652C1EcfB3E6 [https://etherscan.io/address/0xE4b65889469ad896e866331f0AB5652C1EcfB3E6#code]

	SynthBurner

	SynthBurner.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/burners/SynthBurner.vy]

	0x67a0213310202DBc2cbE788f4349B72fbA90f9Fa [https://etherscan.io/address/0x67a0213310202dbc2cbe788f4349b72fba90f9fa]

	USDNBurner

	USDNBurner.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/burners/USDNBurner.vy]

	0x06534b0BF7Ff378F162d4F348390BDA53b15fA35 [https://etherscan.io/address/0x06534b0BF7Ff378F162d4F348390BDA53b15fA35#code]

	UnderlyingBurner

	UnderlyingBurner.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/burners/UnderlyingBurner.vy]

	0x786b374b5eef874279f4b7b4de16940e57301a58 [https://etherscan.io/address/0x786b374b5eef874279f4b7b4de16940e57301a58#code]

	UniswapBurner

	UniswapBurner.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/burners/UniswapBurner.vy]

	0xf3b64840b39121b40d8685f1576b64c157ce2e24 [https://etherscan.io/address/0xf3b64840b39121b40d8685f1576b64c157ce2e24#code]

	YBurner

	YBurner.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/burners/YBurner.vy]

	0xd16ea3e5681234da84419512eb597362135cd8c9 [https://etherscan.io/address/0xd16ea3e5681234da84419512eb597362135cd8c9#code]

Pool Registry

The pool registry serves as an on-chain information hub about the current state of Curve pools. For instance, on-chain integrators can fetch the current address of a Curve pool and query information about it.

Here is a list of all components of the pool registry currently in use:

	Name

	Source

	Address

	Address Provider

	AddressProvider.vy [https://github.com/curvefi/curve-pool-registry/blob/master/contracts/AddressProvider.vy]

	0x0000000022d53366457f9d5e68ec105046fc4383 [https://etherscan.io/address/0x0000000022d53366457f9d5e68ec105046fc4383#code]

	Curve Calculator

	CurveCalc.vy [https://github.com/curvefi/curve-pool-registry/blob/master/contracts/CurveCalc.vy]

	0xc1DB00a8E5Ef7bfa476395cdbcc98235477cDE4E [https://etherscan.io/address/0xc1DB00a8E5Ef7bfa476395cdbcc98235477cDE4E#code]

	Pool Info

	PoolInfo.vy [https://github.com/curvefi/curve-pool-registry/blob/master/contracts/PoolInfo.vy]

	0xe64608E223433E8a03a1DaaeFD8Cb638C14B552C [https://etherscan.io/address/0xe64608E223433E8a03a1DaaeFD8Cb638C14B552C#code]

	Registry

	Registry.vy [https://github.com/curvefi/curve-pool-registry/blob/master/contracts/Registry.vy]

	0x90E00ACe148ca3b23Ac1bC8C240C2a7Dd9c2d7f5 [https://etherscan.io/address/0x90E00ACe148ca3b23Ac1bC8C240C2a7Dd9c2d7f5#code]

MetaPool Factory

The metapool factory allows for the permissionless deployment of Curve metapools. As discussed here, the metapool factory has the following core components:

	The factory is the main contract used to deploy new metapools. It also acts a registry for finding the deployed pools and querying information about them.

	Pools are deployed via a proxy contract. The implementation contract targetted by the proxy is determined according to the base pool. This is the same technique used to create pools in Uniswap V1.

	Deposit contracts (“zaps”) are used for wrapping and unwrapping underlying assets when depositing into or withdrawing from pools.

	Name

	Source

	Address

	Factory

	Factory.vy [https://github.com/curvefi/curve-factory/blob/master/contracts/Factory.vy]

	0xB9fC157394Af804a3578134A6585C0dc9cc990d4 [https://etherscan.io/address/0xB9fC157394Af804a3578134A6585C0dc9cc990d4]

	Migrator

	PoolMigrator.vy [https://github.com/curvefi/curve-factory/blob/master/contracts/PoolMigrator.vy]

	0xd6930b7f661257DA36F93160149b031735237594 [https://etherscan.io/address/0xd6930b7f661257DA36F93160149b031735237594]

Implementation Contracts

The implementation contracts used for factory metapools are deployed to the mainnet at the following addresses:

	Name

	Source

	Address

	3pool

	MetaImplementationUSD.vy [https://github.com/curvefi/curve-factory/blob/master/contracts/MetaImplementationUSD.vy]

	0x5F890841f657d90E081bAbdB532A05996Af79Fe6 [https://etherscan.io/address/0x5F890841f657d90E081bAbdB532A05996Af79Fe6]

	sBTC

	MetaImplementationBTC.vy [https://github.com/curvefi/curve-factory/blob/master/contracts/MetaImplementationBTC.vy]

	0x2f956eee002b0debd468cf2e0490d1aec65e027f [https://etherscan.io/address/0x2f956eee002b0debd468cf2e0490d1aec65e027f]

Deposit Zaps

Deposit zaps for factory metapools are deployed to the mainnet at the following addresses:

	Name

	Source

	Address

	3pool Deposit Zap

	DepositZapUSD.vy [https://github.com/curvefi/curve-factory/blob/master/contracts/DepositZapUSD.vy]

	0xA79828DF1850E8a3A3064576f380D90aECDD3359 [https://etherscan.io/address/0xa79828df1850e8a3a3064576f380d90aecdd3359]

	sBTC Deposit Zap

	DepositZapBTC.vy [https://github.com/curvefi/curve-factory/blob/master/contracts/DepositZapBTC.vy]

	0x7AbDBAf29929e7F8621B757D2a7c04d78d633834 [https://etherscan.io/address/0x7abdbaf29929e7f8621b757d2a7c04d78d633834]

Promoted Factory Pools

Factory metapools which have been promoted to the flagship Curve UI.

	Pool

	Source

	Address

	alUSD

	MetaImplementationUSD.vy [https://github.com/curvefi/curve-factory/blob/master/contracts/MetaImplementationUSD.vy]

	0x43b4FdFD4Ff969587185cDB6f0BD875c5Fc83f8c [https://etherscan.io/address/0x43b4FdFD4Ff969587185cDB6f0BD875c5Fc83f8c#code]

	FRAX

	MetaImplementationUSD.vy [https://github.com/curvefi/curve-factory/blob/master/contracts/MetaImplementationUSD.vy]

	0xd632f22692FaC7611d2AA1C0D552930D43CAEd3B [https://etherscan.io/address/0xd632f22692FaC7611d2AA1C0D552930D43CAEd3B#code]

Other Chains

Arbitrum

Curve has several contracts deployed on Arbitrum [https://offchainlabs.com/]. UI for these contracts is available at arbitrum.curve.fi [https://arbitrum.curve.fi].

Pools and Gauges

	Name

	Source

	Address

	2Pool

	StableSwap.vy [https://arbiscan.io/address/0x7f90122BF0700F9E7e1F688fe926940E8839F353#code]

	0x7f90122BF0700F9E7e1F688fe926940E8839F353 [https://arbiscan.io/address/0x7f90122BF0700F9E7e1F688fe926940E8839F353]

	2Pool LP Token

	StableSwap.vy [https://arbiscan.io/address/0x7f90122BF0700F9E7e1F688fe926940E8839F353#code]

	0x7f90122BF0700F9E7e1F688fe926940E8839F353 [https://arbiscan.io/address/0x7f90122BF0700F9E7e1F688fe926940E8839F353]

	2Pool Child Gauge

	ChildGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy]

	0xCE5F24B7A95e9cBa7df4B54E911B4A3Dc8CDAf6f [https://arbiscan.io/address/0xCE5F24B7A95e9cBa7df4B54E911B4A3Dc8CDAf6f]

	2Pool Root Gauge

	RootGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy]

	0xCE5F24B7A95e9cBa7df4B54E911B4A3Dc8CDAf6f [https://etherscan.io/address/0xCE5F24B7A95e9cBa7df4B54E911B4A3Dc8CDAf6f]

	wBTC/renBTC Pool

	StableSwap.vy [https://arbiscan.io/address/0x3E01dD8a5E1fb3481F0F589056b428Fc308AF0Fb#code]

	0x3E01dD8a5E1fb3481F0F589056b428Fc308AF0Fb [https://arbiscan.io/address/0x3E01dD8a5E1fb3481F0F589056b428Fc308AF0Fb]

	wBTC/renBTC LP Token

	StableSwap.vy [https://arbiscan.io/address/0x3E01dD8a5E1fb3481F0F589056b428Fc308AF0Fb#code]

	0x3E01dD8a5E1fb3481F0F589056b428Fc308AF0Fb [https://arbiscan.io/address/0x3E01dD8a5E1fb3481F0F589056b428Fc308AF0Fb]

	wBTC/renBTC Child Gauge

	ChildGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy]

	0xDB3fd1bfC67b5D4325cb31C04E0Cae52f1787FD6 [https://arbiscan.io/address/0xDB3fd1bfC67b5D4325cb31C04E0Cae52f1787FD6]

	wBTC/renBTC Root Gauge

	RootGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy]

	0xDB3fd1bfC67b5D4325cb31C04E0Cae52f1787FD6 [https://etherscan.io/address/0xDB3fd1bfC67b5D4325cb31C04E0Cae52f1787FD6]

	Tricrypto Pool

	CryptoSwap.vy [https://github.com/curvefi/curve-crypto-contract/blob/master/deployment-logs/2021-09-13.%20Arbitrum/CryptoSwap.vy]

	0x960ea3e3C7FB317332d990873d354E18d7645590 [https://arbiscan.io/address/0x960ea3e3C7FB317332d990873d354E18d7645590]

	Tricrypto LP Token

	CurveTokenV5.vy [https://github.com/curvefi/curve-crypto-contract/blob/master/contracts/CurveTokenV5.vy]

	0x8e0B8c8BB9db49a46697F3a5Bb8A308e744821D2 [https://arbiscan.io/address/0x8e0B8c8BB9db49a46697F3a5Bb8A308e744821D2]

	Tricrypto Zap

	CryptoZap.vy [https://arbiscan.io/address/0xF97c707024ef0DD3E77a0824555a46B622bfB500#code]

	0xF97c707024ef0DD3E77a0824555a46B622bfB500 [https://arbiscan.io/address/0xF97c707024ef0DD3E77a0824555a46B622bfB500]

	Tricrypto Child Gauge

	ChildGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy]

	0x555766f3da968ecBefa690Ffd49A2Ac02f47aa5f [https://arbiscan.io/address/0x555766f3da968ecBefa690Ffd49A2Ac02f47aa5f]

	Tricrypto Root Gauge

	RootGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy]

	0x555766f3da968ecBefa690Ffd49A2Ac02f47aa5f [https://etherscan.io/address/0x555766f3da968ecBefa690Ffd49A2Ac02f47aa5f]

	EURs Pool

	CryptoSwap.vy [https://github.com/curvefi/curve-crypto-contract/blob/master/deployment-logs/2021-10-30.%20EURS/CryptoSwap.vy]

	0xA827a652Ead76c6B0b3D19dba05452E06e25c27e [https://arbiscan.io/address/0xA827a652Ead76c6B0b3D19dba05452E06e25c27e]

	EURs LP Token

	CurveTokenV5.vy [https://github.com/curvefi/curve-crypto-contract/blob/master/contracts/CurveTokenV5.vy]

	0x3dFe1324A0ee9d86337d06aEB829dEb4528DB9CA [https://arbiscan.io/address/0x3dFe1324A0ee9d86337d06aEB829dEb4528DB9CA]

	EURs Zap

	ZapTwoArbiEurs.vy [https://github.com/curvefi/curve-crypto-contract/blob/master/deployment-logs/2021-10-30.%20EURS/ZapTwoArbiEurs.vy]

	0x25e2e8d104BC1A70492e2BE32dA7c1f8367F9d2c [https://arbiscan.io/address/0x25e2e8d104BC1A70492e2BE32dA7c1f8367F9d2c]

	EURs Child Gauge

	ChildGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy]

	0x6339eF8Df0C2d3d3E7eE697E241666a916B81587 [https://arbiscan.io/address/0x6339eF8Df0C2d3d3E7eE697E241666a916B81587]

	EURs Root Gauge

	RootGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy]

	0x6339eF8Df0C2d3d3E7eE697E241666a916B81587 [https://etherscan.io/address/0x6339eF8Df0C2d3d3E7eE697E241666a916B81587]

Factories

	Name

	Source

	Address

	StableSwap Factory

	FactorySidechains.vy [https://github.com/curvefi/curve-factory/blob/master/contracts/FactorySidechains.vy]

	0xb17b674D9c5CB2e441F8e196a2f048A81355d031 [https://arbiscan.io/address/0xb17b674D9c5CB2e441F8e196a2f048A81355d031]

	MetaUSD Zap

	MetaUSDZap.vy [https://arbiscan.io/address/0x7544Fe3d184b6B55D6B36c3FCA1157eE0Ba30287#code]

	0x7544Fe3d184b6B55D6B36c3FCA1157eE0Ba30287 [https://arbiscan.io/address/0x7544Fe3d184b6B55D6B36c3FCA1157eE0Ba30287]

	MetaBTC Zap

	MetaBTCZap.vy [https://arbiscan.io/address/0x803A2B40c5a9BB2B86DD630B274Fa2A9202874C2#code]

	0x803A2B40c5a9BB2B86DD630B274Fa2A9202874C2 [https://arbiscan.io/address/0x803A2B40c5a9BB2B86DD630B274Fa2A9202874C2]

	X-Chain Gauge Factory

	ChildGaugeFactory.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/ChildGaugeFactory.vy]

	0xabC000d88f23Bb45525E447528DBF656A9D55bf5 [https://arbiscan.io/address/0xabC000d88f23Bb45525E447528DBF656A9D55bf5]

Aurora

Curve has several contracts deployed on Aurora [https://aurora.dev/start/]. UI for these contracts is available at aurora.curve.fi [https://aurora.curve.fi].

Pools and Gauges

	Name

	Source

	Address

	3Pool

	StableSwap.vy [https://aurorascan.dev/address/0xbF7E49483881C76487b0989CD7d9A8239B20CA41#code]

	0xbF7E49483881C76487b0989CD7d9A8239B20CA41 [https://aurorascan.dev/address/0xbF7E49483881C76487b0989CD7d9A8239B20CA41]

	3Pool LP Token

	StableSwap.vy [https://aurorascan.dev/address/0xbF7E49483881C76487b0989CD7d9A8239B20CA41#code]

	0xbF7E49483881C76487b0989CD7d9A8239B20CA41 [https://aurorascan.dev/address/0xbF7E49483881C76487b0989CD7d9A8239B20CA41]

	3Pool Rewards-only Gauge

	RewardsOnlyGauge.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/RewardsOnlyGauge.vy]

	0xC2b1DF84112619D190193E48148000e3990Bf627 [https://aurorascan.dev/address/0xc2b1df84112619d190193e48148000e3990bf627]

Avalanche

Curve has several contracts deployed on Avalanche [https://www.avax.network/]. UI for these contracts is available at avax.curve.fi [https://avax.curve.fi].

Pools and Gauges

	Name

	Source

	Address

	Aave Pool

	StableSwap.vy [https://snowtrace.io/address/0x7f90122BF0700F9E7e1F688fe926940E8839F353#code]

	0x7f90122BF0700F9E7e1F688fe926940E8839F353 [https://snowtrace.io/address/0x7f90122BF0700F9E7e1F688fe926940E8839F353]

	Aave LP Token

	CurveToken.vy [https://snowtrace.io/address/0x1337BedC9D22ecbe766dF105c9623922A27963EC#code]

	0x1337BedC9D22ecbe766dF105c9623922A27963EC [https://snowtrace.io/address/0x1337BedC9D22ecbe766dF105c9623922A27963EC]

	Aave Child Gauge

	ChildGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy]

	0x4620D46b4db7fB04a01A75fFed228Bc027C9A899 [https://snowtrace.io/address/0x4620D46b4db7fB04a01A75fFed228Bc027C9A899]

	Aave Root Gauge

	RootGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy]

	0x4620D46b4db7fB04a01A75fFed228Bc027C9A899 [https://etherscan.io/address/0x4620D46b4db7fB04a01A75fFed228Bc027C9A899]

	renBTC Pool

	StableSwap.vy [https://snowtrace.io/address/0x16a7DA911A4DD1d83F3fF066fE28F3C792C50d90]

	0xC2b1DF84112619D190193E48148000e3990Bf627 [https://snowtrace.io/address/0xC2b1DF84112619D190193E48148000e3990Bf627]

	renBTC LP Token

	StableSwap.vy [https://snowtrace.io/address/0x16a7DA911A4DD1d83F3fF066fE28F3C792C50d90]

	0xC2b1DF84112619D190193E48148000e3990Bf627 [https://snowtrace.io/address/0xC2b1DF84112619D190193E48148000e3990Bf627]

	renBTC Child Gauge

	ChildGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy]

	0x00F7d467ef51E44f11f52a0c0Bef2E56C271b264 [https://snowtrace.io/address/0x00F7d467ef51E44f11f52a0c0Bef2E56C271b264]

	renBTC Root Gauge

	RootGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy]

	0x00F7d467ef51E44f11f52a0c0Bef2E56C271b264 [https://etherscan.io/address/0x00F7d467ef51E44f11f52a0c0Bef2E56C271b264]

	ATriCrypto Pool

	CryptoSwap.vy [https://github.com/curvefi/curve-crypto-contract/blob/master/deployment-logs/2021-10-04.%20Avax/CryptoSwap.vy]

	0xB755B949C126C04e0348DD881a5cF55d424742B2 [https://snowtrace.io/address/0xB755B949C126C04e0348DD881a5cF55d424742B2]

	ATriCrypto LP Token

	CurveToken.vy [https://snowtrace.io/address/0x1daB6560494B04473A0BE3E7D83CF3Fdf3a51828#code]

	0x1daB6560494B04473A0BE3E7D83CF3Fdf3a51828 [https://snowtrace.io/address/0x1daB6560494B04473A0BE3E7D83CF3Fdf3a51828]

	ATriCrypto Zap

	CryptoZap.vy [https://snowtrace.io/address/0x58e57cA18B7A47112b877E31929798Cd3D703b0f#code]

	0x58e57cA18B7A47112b877E31929798Cd3D703b0f [https://snowtrace.io/address/0x58e57cA18B7A47112b877E31929798Cd3D703b0f]

	ATriCrypto Child Gauge

	ChildGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy]

	0x1879075f1c055564CB968905aC404A5A01a1699A [https://snowtrace.io/address/0x1879075f1c055564CB968905aC404A5A01a1699A]

	ATriCrypto Root Gauge

	RootGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy]

	0x1879075f1c055564CB968905aC404A5A01a1699A [https://etherscan.io/address/0x1879075f1c055564CB968905aC404A5A01a1699A]

Factories

	Name

	Source

	Address

	StableSwap Factory

	FactorySidechains.vy [https://github.com/curvefi/curve-factory/blob/master/contracts/FactorySidechains.vy]

	0xb17b674D9c5CB2e441F8e196a2f048A81355d031 [https://snowtrace.io/address/0xb17b674D9c5CB2e441F8e196a2f048A81355d031]

	MetaUSD Zap

	MetaUSDZap.vy [https://snowtrace.io/address/0x001E3BA199B4FF4B5B6e97aCD96daFC0E2e4156e#code]

	0x001E3BA199B4FF4B5B6e97aCD96daFC0E2e4156e [https://snowtrace.io/address/0x001E3BA199B4FF4B5B6e97aCD96daFC0E2e4156e]

	MetaBTC Zap

	MetaBTCZap.vy [https://snowtrace.io/address/0xEeB3DDBcc4174e0b3fd1C13aD462b95D11Ef42C3#code]

	0xEeB3DDBcc4174e0b3fd1C13aD462b95D11Ef42C3 [https://snowtrace.io/address/0xEeB3DDBcc4174e0b3fd1C13aD462b95D11Ef42C3]

	X-Chain Gauge Factory

	ChildGaugeFactory.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/ChildGaugeFactory.vy]

	0xabC000d88f23Bb45525E447528DBF656A9D55bf5 [https://snowtrace.io/address/0xabC000d88f23Bb45525E447528DBF656A9D55bf5]

Fantom

Curve has several contracts deployed on Fantom [https://fantom.foundation/]. UI for these contracts is available at ftm.curve.fi [https://ftm.curve.fi].

Pools and Gauges

	Name

	Source

	Address

	2Pool Pool

	StableSwap2Pool.vy [https://github.com/curvefi/curve-contract-fantom/blob/master/contracts/pools/2pool/StableSwap2Pool.vy]

	0x27E611FD27b276ACbd5Ffd632E5eAEBEC9761E40 [https://ftmscan.com/address/0x27E611FD27b276ACbd5Ffd632E5eAEBEC9761E40]

	2Pool LP Token

	StableSwap2Pool.vy [https://github.com/curvefi/curve-contract-fantom/blob/master/contracts/pools/2pool/StableSwap2Pool.vy]

	0x27E611FD27b276ACbd5Ffd632E5eAEBEC9761E40 [https://ftmscan.com/address/0x27E611FD27b276ACbd5Ffd632E5eAEBEC9761E40]

	2Pool Child Gauge

	ChildGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy]

	0x15bB164F9827De760174d3d3dAD6816eF50dE13c [https://ftmscan.com/address/0x15bB164F9827De760174d3d3dAD6816eF50dE13c]

	2Pool Root Gauge

	RootGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy]

	0x15bB164F9827De760174d3d3dAD6816eF50dE13c [https://etherscan.io/address/0x15bB164F9827De760174d3d3dAD6816eF50dE13c]

	fUSDT Pool

	StableSwapFUSDT.vy [https://github.com/curvefi/curve-contract-fantom/blob/master/contracts/pools/fusdt/StableSwapFUSDT.vy]

	0x92D5ebF3593a92888C25C0AbEF126583d4b5312E [https://ftmscan.com/address/0x92D5ebF3593a92888C25C0AbEF126583d4b5312E]

	fUSDT LP Token

	StableSwap2Pool.vy [https://github.com/curvefi/curve-contract-fantom/blob/master/contracts/pools/2pool/StableSwap2Pool.vy]

	0x92D5ebF3593a92888C25C0AbEF126583d4b5312E [https://ftmscan.com/address/0x92D5ebF3593a92888C25C0AbEF126583d4b5312E]

	fUSDT Root Chain Gauge

	RootGaugeAnyswap.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/sidechain/RootGaugeAnyswap.vy]

	0xfE1A3dD8b169fB5BF0D5dbFe813d956F39fF6310 [https://etherscan.io/address/0xfE1A3dD8b169fB5BF0D5dbFe813d956F39fF6310]

	fUSDT Child Chain Streamer

	ChildChainStreamer.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/streamers/ChildChainStreamer.vy]

	0xfE1A3dD8b169fB5BF0D5dbFe813d956F39fF6310 [https://ftmscan.com/address/0xfE1A3dD8b169fB5BF0D5dbFe813d956F39fF6310]

	fUSDT Gauge

	RewardsOnlyGauge.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/RewardsOnlyGauge.vy]

	0x06e3C4da96fd076b97b7ca3Ae23527314b6140dF [https://ftmscan.com/address/0x06e3C4da96fd076b97b7ca3Ae23527314b6140dF]

	renBTC Pool

	StableSwapREN.vy [https://github.com/skellet0r/curve-contract-fantom/blob/master/contracts/pools/ren/StableSwapREN.vy]

	0x3eF6A01A0f81D6046290f3e2A8c5b843e738E604 [https://ftmscan.com/address/0x3eF6A01A0f81D6046290f3e2A8c5b843e738E604]

	renBTC LP Token

	CurveTokenV3.vy [https://github.com/curvefi/curve-contract-fantom/blob/master/contracts/CurveTokenV3.vy]

	0x5B5CFE992AdAC0C9D48E05854B2d91C73a003858 [https://ftmscan.com/address/0x5B5CFE992AdAC0C9D48E05854B2d91C73a003858]

	renBTC Child Gauge

	ChildGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy]

	0xbC38bD19227F91424eD4132F630f51C9A42Fa338 [https://ftmscan.com/address/0xbC38bD19227F91424eD4132F630f51C9A42Fa338]

	renBTC Root Gauge

	RootGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy]

	0xbC38bD19227F91424eD4132F630f51C9A42Fa338 [https://etherscan.io/address/0xbC38bD19227F91424eD4132F630f51C9A42Fa338]

	Geist Pool

	StableSwap.vy [https://ftmscan.com/address/0x0fa949783947Bf6c1b171DB13AEACBB488845B3f#code]

	0x0fa949783947Bf6c1b171DB13AEACBB488845B3f [https://ftmscan.com/address/0x0fa949783947Bf6c1b171DB13AEACBB488845B3f]

	Geist LP Token

	CurveToken.vy [https://ftmscan.com/address/0xD02a30d33153877BC20e5721ee53DeDEE0422B2F#code]

	0xD02a30d33153877BC20e5721ee53DeDEE0422B2F [https://ftmscan.com/address/0xD02a30d33153877BC20e5721ee53DeDEE0422B2F]

	Geist Child Gauge

	ChildGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy]

	0xF7b9c402c4D6c2eDbA04a7a515b53D11B1E9b2cc [https://ftmscan.com/address/0xF7b9c402c4D6c2eDbA04a7a515b53D11B1E9b2cc]

	Geist Root Gauge

	RootGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy]

	0xF7b9c402c4D6c2eDbA04a7a515b53D11B1E9b2cc [https://etherscan.io/address/0xF7b9c402c4D6c2eDbA04a7a515b53D11B1E9b2cc]

	TriCrypto Pool

	CryptoSwap.vy [https://github.com/curvefi/curve-crypto-contract/blob/master/deployment-logs/2021-09-17.%20Fantom/CryptoSwap.vy]

	0x3a1659Ddcf2339Be3aeA159cA010979FB49155FF [https://ftmscan.com/address/0x3a1659Ddcf2339Be3aeA159cA010979FB49155FF]

	TriCrypto LP Token

	CurveToken.vy [https://ftmscan.com/address/0x58e57cA18B7A47112b877E31929798Cd3D703b0f#code]

	0x58e57cA18B7A47112b877E31929798Cd3D703b0f [https://ftmscan.com/address/0x58e57cA18B7A47112b877E31929798Cd3D703b0f]

	TriCrypto Child Gauge

	ChildGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy]

	0x319E268f0A4C85D404734ee7958857F5891506d7 [https://ftmscan.com/address/0x319E268f0A4C85D404734ee7958857F5891506d7]

	TriCrypto Root Gauge

	RootGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy]

	0x319E268f0A4C85D404734ee7958857F5891506d7 [https://etherscan.io/address/0x319E268f0A4C85D404734ee7958857F5891506d7]

	IronBank Pool

	StableSwap.vy [https://ftmscan.com/address/0x4FC8D635c3cB1d0aa123859e2B2587d0FF2707b1#code]

	0x4FC8D635c3cB1d0aa123859e2B2587d0FF2707b1 [https://ftmscan.com/address/0x4FC8D635c3cB1d0aa123859e2B2587d0FF2707b1]

	IronBank LP Token

	CurveToken.vy [https://ftmscan.com/address/0xDf38ec60c0eC001142a33eAa039e49E9b84E64ED#code]

	0xDf38ec60c0eC001142a33eAa039e49E9b84E64ED [https://ftmscan.com/address/0xDf38ec60c0eC001142a33eAa039e49E9b84E64ED]

	IronBank Rewards-only Gauge

	RewardsOnlyGauge.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/RewardsOnlyGauge.vy]

	0xDee85272EAe1aB4afBc6433F4d819BaBC9c7045A [https://ftmscan.com/address/0xdee85272eae1ab4afbc6433f4d819babc9c7045a]

Factories

	Name

	Source

	Address

	StableSwap Factory

	FactorySidechains.vy [https://github.com/curvefi/curve-factory/blob/master/contracts/FactorySidechains.vy]

	0x686d67265703d1f124c45e33d47d794c566889ba [https://ftmscan.com/address/0x686d67265703d1f124c45e33d47d794c566889ba]

	MetaUSD Zap (2pool)

	MetaUSDZap.vy [https://ftmscan.com/address/0x78D51EB71a62c081550EfcC0a9F9Ea94B2Ef081c#code]

	0x78D51EB71a62c081550EfcC0a9F9Ea94B2Ef081c [https://ftmscan.com/address/0x78D51EB71a62c081550EfcC0a9F9Ea94B2Ef081c]

	MetaUSD Zap (geist)

	MetaUSDZap.vy [https://ftmscan.com/address/0x247aEB220E87f24c40C9F86b65d6bd5d3c987B55#code]

	0x247aEB220E87f24c40C9F86b65d6bd5d3c987B55 [https://ftmscan.com/address/0x247aEB220E87f24c40C9F86b65d6bd5d3c987B55]

	MetaBTC Zap

	MetaBTCZap.vy [https://ftmscan.com/address/0x001E3BA199B4FF4B5B6e97aCD96daFC0E2e4156e#code]

	0x001E3BA199B4FF4B5B6e97aCD96daFC0E2e4156e [https://ftmscan.com/address/0x001E3BA199B4FF4B5B6e97aCD96daFC0E2e4156e]

	X-Chain Gauge Factory

	ChildGaugeFactory.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/ChildGaugeFactory.vy]

	0xabC000d88f23Bb45525E447528DBF656A9D55bf5 [https://ftmscan.com/address/0xabC000d88f23Bb45525E447528DBF656A9D55bf5]

Harmony

Curve has several contracts deployed on Harmony [https://www.harmony.one/]. UI for these contracts is available at harmony.curve.fi [https://harmony.curve.fi].

Pools and Gauges

	Name

	Source

	Address

	3Pool

	StableSwap.vy [https://explorer.harmony.one/address/0xc5cfada84e902ad92dd40194f0883ad49639b023]

	0xC5cfaDA84E902aD92DD40194f0883ad49639b023 [https://explorer.harmony.one/address/0xc5cfada84e902ad92dd40194f0883ad49639b023]

	3Pool LP Token

	StableSwap.vy [https://explorer.harmony.one/address/0xc5cfada84e902ad92dd40194f0883ad49639b023]

	0xC5cfaDA84E902aD92DD40194f0883ad49639b023 [https://explorer.harmony.one/address/0xc5cfada84e902ad92dd40194f0883ad49639b023]

	3Pool RewardsOnly Gauge

	RewardsOnlyGauge.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/RewardsOnlyGauge.vy]

	0xbF7E49483881C76487b0989CD7d9A8239B20CA41 [https://explorer.harmony.one/address/0xbF7E49483881C76487b0989CD7d9A8239B20CA41]

	TriCrypto

	CryptoSwap.vy [https://github.com/curvefi/curve-crypto-contract/blob/master/deployment-logs/2021-10-17.%20Hamony/CryptoSwap.vy]

	0x0e3Dc2BcbFEa84072A0c794B7653d3db364154e0 [https://explorer.harmony.one/address/0xc5cfada84e902ad92dd40194f0883ad49639b023]

	TriCrypto LP Token

	Token.json [https://github.com/curvefi/curve-crypto-contract/blob/master/deployment-logs/2021-10-17.%20Hamony/swap.json]

	0xC5cfaDA84E902aD92DD40194f0883ad49639b023 [https://explorer.harmony.one/address/0x99E8eD28B97c7F1878776eD94fFC77CABFB9B726]

	TriCrypto Zap

	ZapHarmony.vy [https://github.com/curvefi/curve-crypto-contract/blob/master/deployment-logs/2021-10-17.%20Hamony/ZapHarmony.vy]

	0x76147c0C989670D106b57763a24410A2a22e335E [https://explorer.harmony.one/address/0x76147c0c989670d106b57763a24410a2a22e335e]

	TriCrypto Gauge

	RewardsOnlyGauge.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/RewardsOnlyGauge.vy]

	0xF98450B5602fa59CC66e1379DFfB6FDDc724CfC4 [https://explorer.harmony.one/address/0xF98450B5602fa59CC66e1379DFfB6FDDc724CfC4]

Moonbeam

Curve has several contracts deployed on Moonbeam [https://moonbeam.network/]. UI for these contracts is available at moonbeam.curve.fi [https://harmony.curve.fi].

Pools

	Name

	Source

	Address

	3Pool

	StableSwap.vy [https://moonscan.io/address/0xace58a26b8db90498ef0330fdc9c2655db0c45e2#code]

	0xace58a26b8Db90498eF0330fDC9C2655db0C45E2 [https://moonscan.io/address/0xace58a26b8db90498ef0330fdc9c2655db0c45e2]

	3Pool LP Token

	StableSwap.vy [https://moonscan.io/address/0xace58a26b8db90498ef0330fdc9c2655db0c45e2#code]

	0xace58a26b8Db90498eF0330fDC9C2655db0C45E2 [https://moonscan.io/address/0xace58a26b8db90498ef0330fdc9c2655db0c45e2]

Factories

	Name

	Source

	Address

	StableSwap Factory

	FactorySidechains.vy [https://github.com/curvefi/curve-factory/blob/master/contracts/FactorySidechains.vy]

	0x4244eB811D6e0Ef302326675207A95113dB4E1F8 [https://moonscan.io/address/0x4244eB811D6e0Ef302326675207A95113dB4E1F8]

	X-Chain Gauge Factory

	ChildGaugeFactory.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/ChildGaugeFactory.vy]

	0xabC000d88f23Bb45525E447528DBF656A9D55bf5 [https://moonscan.io/address/0xabC000d88f23Bb45525E447528DBF656A9D55bf5]

Optimism

Curve has several contracts deployed on Optimism [https://www.optimism.io/]. UI for these contracts is available at optimism.curve.fi [https://optimism.curve.fi].

Pools

	Name

	Source

	Address

	3pool

	StableSwap.vy [https://optimistic.etherscan.io/address/0x1337BedC9D22ecbe766dF105c9623922A27963EC#code]

	0x1337BedC9D22ecbe766dF105c9623922A27963ECA [https://optimistic.etherscan.io/address/0x1337BedC9D22ecbe766dF105c9623922A27963EC]

	3pool LP Token

	StableSwap.vy [https://optimistic.etherscan.io/address/0x1337BedC9D22ecbe766dF105c9623922A27963EC#code]

	0x1337BedC9D22ecbe766dF105c9623922A27963ECA [https://optimistic.etherscan.io/address/0x1337BedC9D22ecbe766dF105c9623922A27963EC]

	3Pool Rewards Only Gauge

	RewardsOnlyGauge.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/RewardsOnlyGauge.vy]

	0x7f90122BF0700F9E7e1F688fe926940E8839F353 [https://optimistic.etherscan.io/address/0x7f90122bf0700f9e7e1f688fe926940e8839f353#code]

Factories

	Name

	Source

	Address

	StableSwap Factory

	FactorySidechains.vy [https://github.com/curvefi/curve-factory/blob/master/contracts/FactorySidechains.vy]

	0x2db0E83599a91b508Ac268a6197b8B14F5e72840 [https://optimistic.etherscan.io/address/0x2db0E83599a91b508Ac268a6197b8B14F5e72840]

	X-Chain Gauge Factory

	ChildGaugeFactory.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/ChildGaugeFactory.vy]

	0xabC000d88f23Bb45525E447528DBF656A9D55bf5 [https://optimistic.etherscan.io/address/0xabC000d88f23Bb45525E447528DBF656A9D55bf5]

Polygon

Curve has several contracts deployed on Polygon [https://polygon.technology/]. UI for these contracts is available at polygon.curve.fi [https://polygon.curve.fi].

Pools and Gauges

	Name

	Source

	Address

	ATriCrypto Pool

	CurveCryptoSwapMatic.vy [https://github.com/curvefi/curve-crypto-contract/blob/master/contracts/matic/CurveCryptoSwapMatic.vy]

	0x751B1e21756bDbc307CBcC5085c042a0e9AaEf36 [https://polygonscan.com/address/0x751B1e21756bDbc307CBcC5085c042a0e9AaEf36]

	ATriCrypto Zap

	ZapAave.vy [https://github.com/curvefi/curve-crypto-contract/blob/master/contracts/matic/ZapAave.vy]

	0x3FCD5De6A9fC8A99995c406c77DDa3eD7E406f81 [https://polygonscan.com/address/0x3FCD5De6A9fC8A99995c406c77DDa3eD7E406f81]

	ATriCrypto LP Token

	CurveTokenV4.vy [https://github.com/curvefi/curve-crypto-contract/blob/master/contracts/CurveTokenV4.vy]

	0x8096ac61db23291252574D49f036f0f9ed8ab390 [https://polygonscan.com/address/0x8096ac61db23291252574D49f036f0f9ed8ab390]

	ATriCrypto Root Chain Gauge

	RootGaugePolygon.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/sidechain/RootGaugePolygon.vy]

	0x060e386eCfBacf42Aa72171Af9EFe17b3993fC4F [https://etherscan.io/address/0x060e386eCfBacf42Aa72171Af9EFe17b3993fC4F]

	ATriCrypto Child Chain Streamer

	ChildChainStreamer.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/streamers/ChildChainStreamer.vy]

	0x060e386eCfBacf42Aa72171Af9EFe17b3993fC4F [https://polygonscan.com/address/0x060e386eCfBacf42Aa72171Af9EFe17b3993fC4F]

	ATriCrypto Reward Claimer

	RewardClaimer.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/streamers/RewardClaimer.vy]

	0xe84AE0321f88349B5F1119464EEB242b7De51a69 [https://polygonscan.com/address/0xe84AE0321f88349B5F1119464EEB242b7De51a69]

	ATriCrypto Gauge

	RewardsOnlyGauge.vy [https://github.com/curvefi/curve-dao-contracts/blob/master/contracts/gauges/RewardsOnlyGauge.vy]

	0xb0a366b987d77b5eD5803cBd95C80bB6DEaB48C0 [https://polygonscan.com/address/0xb0a366b987d77b5eD5803cBd95C80bB6DEaB48C0]

	ATriCrypto3 Pool

	CryptoSwap.vy [https://github.com/curvefi/curve-crypto-contract/blob/master/deployment-logs/2021-08-27.%20Polygon%20redeployment/CryptoSwap.vy]

	0x92215849c439E1f8612b6646060B4E3E5ef822cC [https://polygonscan.com/address/0x92215849c439E1f8612b6646060B4E3E5ef822cC]

	ATriCrypto3 LP Token

	CurveTokenV5.vy [https://github.com/curvefi/curve-crypto-contract/blob/master/contracts/CurveTokenV5.vy]

	0xdAD97F7713Ae9437fa9249920eC8507e5FbB23d3 [https://polygonscan.com/address/0xdAD97F7713Ae9437fa9249920eC8507e5FbB23d3]

	ATriCrypto3 Zap

	CryptoZap.vy [https://polygonscan.com/address/0x1d8b86e3D88cDb2d34688e87E72F388Cb541B7C8#code]

	0x1d8b86e3D88cDb2d34688e87E72F388Cb541B7C8 [https://polygonscan.com/address/0x1d8b86e3D88cDb2d34688e87E72F388Cb541B7C8]

	ATriCrypto3 Child Gauge

	ChildGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy]

	0xBb1B19495B8FE7C402427479B9aC14886cbbaaeE [https://polygonscan.com/address/0xBb1B19495B8FE7C402427479B9aC14886cbbaaeE]

	ATriCrypto3 Root Gauge

	RootGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy]

	0xBb1B19495B8FE7C402427479B9aC14886cbbaaeE [https://etherscan.io/address/0xBb1B19495B8FE7C402427479B9aC14886cbbaaeE]

	Aave Pool

	StableSwapAave.vy [https://github.com/curvefi/curve-contract-polygon/blob/master/contracts/pools/aave/StableSwapAave.vy]

	0x445FE580eF8d70FF569aB36e80c647af338db351 [https://polygonscan.com/address/0x445FE580eF8d70FF569aB36e80c647af338db351]

	Aave LP Token

	CurveTokenV3.vy [https://github.com/curvefi/curve-contract-polygon/blob/master/contracts/CurveTokenV3.vy]

	0xE7a24EF0C5e95Ffb0f6684b813A78F2a3AD7D171 [https://polygonscan.com/address/0xE7a24EF0C5e95Ffb0f6684b813A78F2a3AD7D171]

	Aave Child Gauge

	ChildGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy]

	0x20759F567BB3EcDB55c817c9a1d13076aB215EdC [https://polygonscan.com/address/0x20759F567BB3EcDB55c817c9a1d13076aB215EdC]

	Aave Root Gauge

	RootGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy]

	0x20759F567BB3EcDB55c817c9a1d13076aB215EdC [https://etherscan.io/address/0x20759F567BB3EcDB55c817c9a1d13076aB215EdC]

	renBTC Pool

	StableSwapREN.vy [https://github.com/curvefi/curve-contract-polygon/blob/master/contracts/pools/ren/StableSwapREN.vy]

	0xC2d95EEF97Ec6C17551d45e77B590dc1F9117C67 [https://polygonscan.com/address/0xC2d95EEF97Ec6C17551d45e77B590dc1F9117C67]

	renBTC LP Token

	CurveTokenV3.vy [https://github.com/curvefi/curve-contract-polygon/blob/master/contracts/CurveTokenV3.vy]

	0xf8a57c1d3b9629b77b6726a042ca48990A84Fb49 [https://polygonscan.com/address/0xf8a57c1d3b9629b77b6726a042ca48990A84Fb49]

	renBTC Child Gauge

	ChildGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy]

	0x8D9649e50A0d1da8E939f800fB926cdE8f18B47D [https://polygonscan.com/address/0x8D9649e50A0d1da8E939f800fB926cdE8f18B47D]

	renBTC Root Gauge

	RootGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy]

	0x8D9649e50A0d1da8E939f800fB926cdE8f18B47D [https://etherscan.io/address/0x8D9649e50A0d1da8E939f800fB926cdE8f18B47D]

	EURTUSD Pool

	CryptoSwap.vy [https://github.com/curvefi/curve-crypto-contract/blob/master/deployment-logs/2021-10-30.%20EURT/CryptoSwap.vy]

	0xB446BF7b8D6D4276d0c75eC0e3ee8dD7Fe15783A [https://polygonscan.com/address/0xB446BF7b8D6D4276d0c75eC0e3ee8dD7Fe15783A]

	EURTUSD LP Token

	CurveToken.vy [https://polygonscan.com/address/0x600743B1d8A96438bD46836fD34977a00293f6Aa#code]

	0x600743B1d8A96438bD46836fD34977a00293f6Aa [https://polygonscan.com/address/0x600743B1d8A96438bD46836fD34977a00293f6Aa]

	EURTUSD Zap

	CryptoZap.vy [https://polygonscan.com/address/0x225FB4176f0E20CDb66b4a3DF70CA3063281E855#code]

	0x225FB4176f0E20CDb66b4a3DF70CA3063281E855 [https://polygonscan.com/address/0x225FB4176f0E20CDb66b4a3DF70CA3063281E855]

	EURTUSD Child Gauge

	ChildGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy]

	0x8b397084699Cc64E429F610F81Fac13bf061ef55 [https://polygonscan.com/address/0x8b397084699Cc64E429F610F81Fac13bf061ef55]

	EURTUSD Root Gauge

	RootGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy]

	0x8b397084699Cc64E429F610F81Fac13bf061ef55 [https://etherscan.io/address/0x8b397084699Cc64E429F610F81Fac13bf061ef55]

	EURs Pool

	CryptoSwap.vy [https://github.com/curvefi/curve-crypto-contract/blob/master/deployment-logs/2022-03-09.%20EURS-polygon/CryptoSwap.vy]

	0x9b3d675FDbe6a0935E8B7d1941bc6f78253549B7 [https://polygonscan.com/address/0x9b3d675FDbe6a0935E8B7d1941bc6f78253549B7]

	EURs LP Token

	Token.json [https://github.com/curvefi/curve-crypto-contract/blob/master/deployment-logs/2022-03-09.%20EURS-polygon/token.json]

	0x7BD9757FbAc089d60DaFF1Fa6bfE3BC99b0F5735 [https://polygonscan.com/address/0x7BD9757FbAc089d60DaFF1Fa6bfE3BC99b0F5735]

	EURs Zap

	Zap.json [https://github.com/curvefi/curve-crypto-contract/blob/master/deployment-logs/2022-03-09.%20EURS-polygon/zap.json]

	0x4DF7eF55E99a56851187822d96B4E17D98A47DeD [https://polygonscan.com/address/0x4DF7eF55E99a56851187822d96B4E17D98A47DeD]

Rewards and Admin Fees

	Name

	Source

	Address

	WMATIC Distributor

	RewardStream.vy [https://github.com/curvefi/curve-contract-polygon/blob/master/contracts/gauges/RewardStream.vy]

	0xBdFF0C27dd073C119ebcb1299a68A6A92aE607F0 [https://polygonscan.com/address/0xBdFF0C27dd073C119ebcb1299a68A6A92aE607F0]

	ABurner

	ABurner.vy [https://github.com/curvefi/curve-contract-polygon/blob/master/contracts/burners/ABurner.vy]

	0xA237034249290De2B07988Ac64b96f22c0E76fE0 [https://polygonscan.com/address/0xA237034249290De2B07988Ac64b96f22c0E76fE0]

	Admin Fee Bridge (Polygon)

	ChildBurner.vy [https://github.com/curvefi/curve-contract-polygon/blob/master/contracts/bridge/ChildBurner.vy]

	0x4473243A61b5193670D1324872368d015081822f [https://polygonscan.com/address/0x4473243A61b5193670D1324872368d015081822f]

	Admin Fee Bridge (Ethereum)

	RootForwarder.vy [https://github.com/curvefi/curve-contract-polygon/blob/master/contracts/bridge/RootForwarder.vy]

	0x4473243A61b5193670D1324872368d015081822f [https://etherscan.io/address/0x4473243A61b5193670D1324872368d015081822f]

Factories

	Name

	Source

	Address

	StableSwap Factory

	FactorySidechains.vy [https://github.com/curvefi/curve-factory/blob/master/contracts/FactorySidechains.vy]

	0x722272d36ef0da72ff51c5a65db7b870e2e8d4ee [https://polygonscan.com/address/0x722272d36ef0da72ff51c5a65db7b870e2e8d4ee]

	MetaUSD Zap

	MetaUSDZap.vy [https://polygonscan.com/address/0x5ab5C56B9db92Ba45a0B46a207286cD83C15C939#code]

	0x5ab5C56B9db92Ba45a0B46a207286cD83C15C939 [https://polygonscan.com/address/0x5ab5C56B9db92Ba45a0B46a207286cD83C15C939]

	MetaBTC Zap

	MetaBTCZap.vy [https://polygonscan.com/address/0xE2e6DC1708337A6e59f227921db08F21e3394723#code]

	0xE2e6DC1708337A6e59f227921db08F21e3394723 [https://polygonscan.com/address/0xE2e6DC1708337A6e59f227921db08F21e3394723]

	X-Chain Gauge Factory

	ChildGaugeFactory.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/ChildGaugeFactory.vy]

	0xabC000d88f23Bb45525E447528DBF656A9D55bf5 [https://polygonscan.com/address/0xabC000d88f23Bb45525E447528DBF656A9D55bf5]

XDai

Curve has several contracts deployed on XDai [https://www.xdaichain.com//]. UI for these contracts is available at xdai.curve.fi [https://xdai.curve.fi].

Pools and Gauges

	Name

	Source

	Address

	x3Pool Pool

	StableSwap3Pool.vy [https://github.com/curvefi/curve-contract-xdai/blob/master/contracts/pools/2pool/StableSwap3Pool.vy]

	0x7f90122BF0700F9E7e1F688fe926940E8839F353 [https://blockscout.com/xdai/mainnet/address/0x7f90122BF0700F9E7e1F688fe926940E8839F353]

	x3Pool LP Token

	StableSwap3Pool.vy [https://github.com/curvefi/curve-contract-xdai/blob/master/contracts/pools/2pool/StableSwap3Pool.vy]

	0x1337BedC9D22ecbe766dF105c9623922A27963EC [https://blockscout.com/xdai/mainnet/address/0x6C09F6727113543Fd061a721da512B7eFCDD0267]

	x3Pool Child Gauge

	ChildGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/ChildGauge.vy]

	0xB721Cc32160Ab0da2614CC6aB16eD822Aeebc101 [https://blockscout.com/xdai/mainnet/address/0xB721Cc32160Ab0da2614CC6aB16eD822Aeebc101]

	x3Pool Root Gauge

	RootGauge.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/implementations/RootGauge.vy]

	0xB721Cc32160Ab0da2614CC6aB16eD822Aeebc101 [https://etherscan.io/address/0xB721Cc32160Ab0da2614CC6aB16eD822Aeebc101]

Factories

	Name

	Source

	Address

	StableSwap Factory

	FactorySidechains.vy [https://github.com/curvefi/curve-factory/blob/master/contracts/FactorySidechains.vy]

	0xD19Baeadc667Cf2015e395f2B08668Ef120f41F5 [https://blockscout.com/xdai/mainnet/address/0xD19Baeadc667Cf2015e395f2B08668Ef120f41F5]

	MetaUSD Zap

	MetaUSDZap.vy [https://blockscout.com/xdai/mainnet/address/0x87C067fAc25f123554a0E76596BF28cFa37fD5E9#code]

	0x87C067fAc25f123554a0E76596BF28cFa37fD5E9 [https://blockscout.com/xdai/mainnet/address/0x87C067fAc25f123554a0E76596BF28cFa37fD5E9]

	X-Chain Gauge Factory

	ChildGaugeFactory.vy [https://github.com/curvefi/curve-xchain-factory/blob/master/contracts/ChildGaugeFactory.vy]

	0xabC000d88f23Bb45525E447528DBF656A9D55bf5 [https://blockscout.com/xdai/mainnet/address/0xabC000d88f23Bb45525E447528DBF656A9D55bf5]

Glossary of Terms

This glossary of terms contains definitions of commonly used terms within the Curve documentation.

This section is a work in progress - if a term is missing, feel free to open a pull request [https://github.com/curvefi/curve-docs] to add it.

	Automated Market Maker (AMM)
	A decentralized asset trading pool that allows participants to buy or sell cryptocurrencies.

	Base Pool
	The pool issuing the LP token that is used by a metapool.

	Burning
	The process of withdrawing admin fees from the excahange contracts and distributing them to veCRV holders.

	ERC20
	A technical standard for implementing tokens within Ethereum. Often used interchangeably with the term token. The standard is viewable here [https://eips.ethereum.org/EIPS/eip-20].

	LP Token
	Short for Liquidity Provider token. An ER20 token which represents a deposit into a Curve exchange contract, or other AMM.

	Metapool
	A Curve pool where one of the tradeable assets is the LP token for another pool (base pool). Metapools are used to prevent liquidity fragmentation.

	Pool
	See automated market maker.

	Synth
	Short for “synthetic asset” - a derivative which tracks the price of another asset, offering exposure to price movements without requiring the user to hold the actual asset.

	Underlying Coin
	An ERC20 token that has been deposited into a protocol and where the deposit is represented by another token. The other token (the “wrapped coin”) may be used to claim back this original token.

	veCRV
	Short for “vote-escrowed CRV”. CRV that has been locked in the voting contract.

	Wrapped Coin
	An ERC20 token used to represent the deposit of another token within a protocol. The original token has been “wrapped” in this new token. The originial token is referred to as the “underlying coin”.

Index

 A
 | B
 | C
 | D
 | F
 | G
 | L
 | M
 | P
 | R
 | S
 | U
 | V

A

 	
 	
 AddressProvider.get_address()

 	built-in function

 	
 AddressProvider.get_id_info()

 	built-in function

 	
 	
 AddressProvider.get_registry()

 	built-in function

 	
 AddressProvider.max_id()

 	built-in function

B

 	
 	
 built-in function

 	AddressProvider.get_address()

 	AddressProvider.get_id_info()

 	AddressProvider.get_registry()

 	AddressProvider.max_id()

 	CurveToken.allowance()

 	CurveToken.approve()

 	CurveToken.balanceOf()

 	CurveToken.burn()

 	CurveToken.burnFrom(), [1]

 	CurveToken.decimals()

 	CurveToken.decreaseAllowance()

 	CurveToken.increaseAllowance()

 	CurveToken.mint(), [1]

 	CurveToken.minter()

 	CurveToken.name()

 	CurveToken.set_minter()

 	CurveToken.set_name()

 	CurveToken.symbol()

 	CurveToken.totalSupply()

 	CurveToken.transfer()

 	CurveToken.transferFrom()

 	DepositZap.add_liquidity(), [1], [2], [3]

 	DepositZap.base_coins()

 	DepositZap.base_pool()

 	DepositZap.calc_token_amount(), [1]

 	DepositZap.calc_withdraw_one_coin(), [1], [2]

 	DepositZap.coins(), [1], [2]

 	DepositZap.curve(), [1]

 	DepositZap.lp_token()

 	DepositZap.pool()

 	DepositZap.remove_liquidity(), [1], [2], [3]

 	DepositZap.remove_liquidity_imbalance(), [1], [2], [3]

 	DepositZap.remove_liquidity_one_coin(), [1], [2], [3]

 	DepositZap.token(), [1]

 	DepositZap.underlying_coins(), [1]

 	DepositZap.withdraw_donated_dust()

 	Factory.deploy_metapool()

 	Factory.find_pool_for_coins()

 	Factory.get_admin_balances()

 	Factory.get_balances()

 	Factory.get_coin_indices()

 	Factory.get_coins()

 	Factory.get_decimals()

 	Factory.get_n_coins()

 	Factory.get_rates()

 	Factory.get_underlying_balances()

 	Factory.get_underlying_coins()

 	Factory.get_underlying_decimals()

 	Factory.migrate_to_new_pool()

 	Factory.pool_count()

 	Factory.pool_list()

 	FeeDistributor.claim()

 	FeeDistributor.claim_many()

 	GaugeController.change_type_weight()

 	GaugeController.gauge_relative_weight()

 	GaugeController.gauge_types()

 	GaugeController.get_gauge_weight()

 	GaugeController.get_total_weight()

 	GaugeController.get_type_weight()

 	GaugeController.get_weights_sum_per_type()

 	GaugeController.last_user_vote()

 	GaugeController.vote_user_power()

 	GaugeController.vote_user_slopes()

 	LiquidityGauge.approved_to_deposit()

 	LiquidityGauge.balanceOf()

 	LiquidityGauge.claimable_tokens()

 	LiquidityGauge.integrate_fraction()

 	LiquidityGauge.is_killed()

 	LiquidityGauge.lp_token()

 	LiquidityGauge.user_checkpoint()

 	LiquidityGauge.working_balances()

 	LiquidityGauge.working_supply()

 	LiquidityGaugeReward.claimable_reward()

 	LiquidityGaugeReward.claimed_rewards_for()

 	LiquidityGaugeReward.is_claiming_rewards()

 	LiquidityGaugeReward.reward_contract()

 	LiquidityGaugeReward.rewarded_token()

 	LiquidityGaugeV2.approve()

 	LiquidityGaugeV2.claimable_reward()

 	LiquidityGaugeV2.reward_contract()

 	LiquidityGaugeV2.rewarded_tokens()

 	LiquidityGaugeV2.transfer()

 	LiquidityGaugeV2.transferFrom()

 	LiquidityGaugeV3.claimable_reward()

 	LiquidityGaugeV3.claimable_reward_write()

 	LiquidityGaugeV3.claimed_reward()

 	LiquidityGaugeV3.last_claim()

 	LiquidityGaugeV3.rewards_receiver()

 	LPBurner.set_swap_data()

 	MetaPool.block_timestamp_last()

 	MetaPool.get_dy()

 	MetaPool.get_price_cumulative_last()

 	MetaPool.get_twap_balances()

 	Minter.allowed_to_mint_for()

 	PoolInfo.get_pool_coins()

 	PoolInfo.get_pool_info()

 	PoolProxy.burners()

 	Registry.coin_count()

 	Registry.estimate_gas_used()

 	Registry.find_pool_for_coins()

 	Registry.gauge_controller()

 	Registry.get_A()

 	Registry.get_admin_balances()

 	Registry.get_balances()

 	Registry.get_coin()

 	Registry.get_coin_indices()

 	Registry.get_coin_swap_complement()

 	Registry.get_coin_swap_count()

 	Registry.get_coins()

 	Registry.get_decimals()

 	Registry.get_fees()

 	Registry.get_gauges()

 	Registry.get_lp_token()

 	Registry.get_n_coins()

 	Registry.get_parameters()

 	Registry.get_pool_asset_type()

 	Registry.get_pool_from_lp_token()

 	Registry.get_pool_name()

 	Registry.get_rates()

 	Registry.get_underlying_balances()

 	Registry.get_underlying_coins()

 	Registry.get_underlying_decimals()

 	Registry.get_virtual_price_from_lp_token()

 	Registry.is_meta()

 	Registry.last_updated()

 	Registry.pool_count()

 	Registry.pool_list()

 	StableSwap.A(), [1]

 	StableSwap.A_precise()

 	StableSwap.add_liquidity(), [1], [2]

 	StableSwap.admin_balances()

 	StableSwap.admin_fee(), [1]

 	StableSwap.allowance()

 	StableSwap.apply_new_fee()

 	StableSwap.apply_transfer_ownership()

 	StableSwap.approve()

 	StableSwap.balanceOf()

 	StableSwap.balances(), [1]

 	StableSwap.base_cache_update()

 	StableSwap.base_coins()

 	StableSwap.base_pool()

 	StableSwap.base_virtual_price()

 	StableSwap.calc_token_amount(), [1]

 	StableSwap.calc_withdraw_one_coin(), [1]

 	StableSwap.coins(), [1], [2]

 	StableSwap.commit_new_fee()

 	StableSwap.commit_transfer_ownership()

 	StableSwap.decimals()

 	StableSwap.donate_admin_fees()

 	StableSwap.exchange(), [1], [2]

 	StableSwap.exchange_underlying(), [1], [2]

 	StableSwap.fee(), [1]

 	StableSwap.get_dy(), [1]

 	StableSwap.get_dy_underlying()

 	StableSwap.get_estimated_swap_amount()

 	StableSwap.get_swap_from_synth_amount()

 	StableSwap.get_swap_into_synth_amount()

 	StableSwap.get_virtual_price(), [1]

 	StableSwap.kill_me()

 	StableSwap.lp_token()

 	StableSwap.name()

 	StableSwap.owner()

 	StableSwap.ramp_A()

 	StableSwap.remove_liquidity(), [1]

 	StableSwap.remove_liquidity_imbalance(), [1]

 	StableSwap.remove_liquidity_one_coin(), [1]

 	StableSwap.revert_new_parameters()

 	StableSwap.revert_transfer_ownership()

 	StableSwap.settle()

 	StableSwap.stop_ramp_A()

 	StableSwap.swap_from_synth()

 	StableSwap.swap_into_synth()

 	StableSwap.swappable_synth()

 	StableSwap.symbol()

 	StableSwap.synth_pools()

 	StableSwap.token_info()

 	StableSwap.totalSupply()

 	StableSwap.transfer()

 	StableSwap.transferFrom()

 	StableSwap.underlying_coins()

 	StableSwap.unkill_me()

 	StableSwap.withdraw()

 	StableSwap.withdraw_admin_fees()

 	Swaps.exchange()

 	Swaps.exchange_with_best_rate()

 	Swaps.get_best_rate()

 	Swaps.get_exchange_amount()

 	SynthBurner.add_synths()

 	SynthBurner.set_swap_for()

 	UnderlyingBurner.execute()

 	VotingEscrow.balanceOf()

 	VotingEscrow.balanceOfAt()

 	VotingEscrow.create_lock()

 	VotingEscrow.increase_amount()

 	VotingEscrow.increase_unlock_time()

 	VotingEscrow.locked()

 	VotingEscrow.totalSupply()

 	VotingEscrow.totalSupplyAt()

 	VotingEscrow.withdraw()

C

 	
 	
 CurveToken.allowance()

 	built-in function

 	
 CurveToken.approve()

 	built-in function

 	
 CurveToken.balanceOf()

 	built-in function

 	
 CurveToken.burn()

 	built-in function

 	
 CurveToken.burnFrom()

 	built-in function, [1]

 	
 CurveToken.decimals()

 	built-in function

 	
 CurveToken.decreaseAllowance()

 	built-in function

 	
 CurveToken.increaseAllowance()

 	built-in function

 	
 CurveToken.mint()

 	built-in function, [1]

 	
 	
 CurveToken.minter()

 	built-in function

 	
 CurveToken.name()

 	built-in function

 	
 CurveToken.set_minter()

 	built-in function

 	
 CurveToken.set_name()

 	built-in function

 	
 CurveToken.symbol()

 	built-in function

 	
 CurveToken.totalSupply()

 	built-in function

 	
 CurveToken.transfer()

 	built-in function

 	
 CurveToken.transferFrom()

 	built-in function

D

 	
 	
 DepositZap.add_liquidity()

 	built-in function, [1], [2], [3]

 	
 DepositZap.base_coins()

 	built-in function

 	
 DepositZap.base_pool()

 	built-in function

 	
 DepositZap.calc_token_amount()

 	built-in function, [1]

 	
 DepositZap.calc_withdraw_one_coin()

 	built-in function, [1], [2]

 	
 DepositZap.coins()

 	built-in function, [1], [2]

 	
 DepositZap.curve()

 	built-in function, [1]

 	
 DepositZap.lp_token()

 	built-in function

 	
 	
 DepositZap.pool()

 	built-in function

 	
 DepositZap.remove_liquidity()

 	built-in function, [1], [2], [3]

 	
 DepositZap.remove_liquidity_imbalance()

 	built-in function, [1], [2], [3]

 	
 DepositZap.remove_liquidity_one_coin()

 	built-in function, [1], [2], [3]

 	
 DepositZap.token()

 	built-in function, [1]

 	
 DepositZap.underlying_coins()

 	built-in function, [1]

 	
 DepositZap.withdraw_donated_dust()

 	built-in function

F

 	
 	
 Factory.deploy_metapool()

 	built-in function

 	
 Factory.find_pool_for_coins()

 	built-in function

 	
 Factory.get_admin_balances()

 	built-in function

 	
 Factory.get_balances()

 	built-in function

 	
 Factory.get_coin_indices()

 	built-in function

 	
 Factory.get_coins()

 	built-in function

 	
 Factory.get_decimals()

 	built-in function

 	
 Factory.get_n_coins()

 	built-in function

 	
 Factory.get_rates()

 	built-in function

 	
 	
 Factory.get_underlying_balances()

 	built-in function

 	
 Factory.get_underlying_coins()

 	built-in function

 	
 Factory.get_underlying_decimals()

 	built-in function

 	
 Factory.migrate_to_new_pool()

 	built-in function

 	
 Factory.pool_count()

 	built-in function

 	
 Factory.pool_list()

 	built-in function

 	
 FeeDistributor.claim()

 	built-in function

 	
 FeeDistributor.claim_many()

 	built-in function

G

 	
 	
 GaugeController.change_type_weight()

 	built-in function

 	
 GaugeController.gauge_relative_weight()

 	built-in function

 	
 GaugeController.gauge_types()

 	built-in function

 	
 GaugeController.get_gauge_weight()

 	built-in function

 	
 GaugeController.get_total_weight()

 	built-in function

 	
 	
 GaugeController.get_type_weight()

 	built-in function

 	
 GaugeController.get_weights_sum_per_type()

 	built-in function

 	
 GaugeController.last_user_vote()

 	built-in function

 	
 GaugeController.vote_user_power()

 	built-in function

 	
 GaugeController.vote_user_slopes()

 	built-in function

L

 	
 	
 LiquidityGauge.approved_to_deposit()

 	built-in function

 	
 LiquidityGauge.balanceOf()

 	built-in function

 	
 LiquidityGauge.claimable_tokens()

 	built-in function

 	
 LiquidityGauge.integrate_fraction()

 	built-in function

 	
 LiquidityGauge.is_killed()

 	built-in function

 	
 LiquidityGauge.lp_token()

 	built-in function

 	
 LiquidityGauge.user_checkpoint()

 	built-in function

 	
 LiquidityGauge.working_balances()

 	built-in function

 	
 LiquidityGauge.working_supply()

 	built-in function

 	
 LiquidityGaugeReward.claimable_reward()

 	built-in function

 	
 LiquidityGaugeReward.claimed_rewards_for()

 	built-in function

 	
 LiquidityGaugeReward.is_claiming_rewards()

 	built-in function

 	
 LiquidityGaugeReward.reward_contract()

 	built-in function

 	
 	
 LiquidityGaugeReward.rewarded_token()

 	built-in function

 	
 LiquidityGaugeV2.approve()

 	built-in function

 	
 LiquidityGaugeV2.claimable_reward()

 	built-in function

 	
 LiquidityGaugeV2.reward_contract()

 	built-in function

 	
 LiquidityGaugeV2.rewarded_tokens()

 	built-in function

 	
 LiquidityGaugeV2.transfer()

 	built-in function

 	
 LiquidityGaugeV2.transferFrom()

 	built-in function

 	
 LiquidityGaugeV3.claimable_reward()

 	built-in function

 	
 LiquidityGaugeV3.claimable_reward_write()

 	built-in function

 	
 LiquidityGaugeV3.claimed_reward()

 	built-in function

 	
 LiquidityGaugeV3.last_claim()

 	built-in function

 	
 LiquidityGaugeV3.rewards_receiver()

 	built-in function

 	
 LPBurner.set_swap_data()

 	built-in function

M

 	
 	
 MetaPool.block_timestamp_last()

 	built-in function

 	
 MetaPool.get_dy()

 	built-in function

 	
 MetaPool.get_price_cumulative_last()

 	built-in function

 	
 	
 MetaPool.get_twap_balances()

 	built-in function

 	
 Minter.allowed_to_mint_for()

 	built-in function

P

 	
 	
 PoolInfo.get_pool_coins()

 	built-in function

 	
 PoolInfo.get_pool_info()

 	built-in function

 	
 	
 PoolProxy.burners()

 	built-in function

R

 	
 	
 Registry.coin_count()

 	built-in function

 	
 Registry.estimate_gas_used()

 	built-in function

 	
 Registry.find_pool_for_coins()

 	built-in function

 	
 Registry.gauge_controller()

 	built-in function

 	
 Registry.get_A()

 	built-in function

 	
 Registry.get_admin_balances()

 	built-in function

 	
 Registry.get_balances()

 	built-in function

 	
 Registry.get_coin()

 	built-in function

 	
 Registry.get_coin_indices()

 	built-in function

 	
 Registry.get_coin_swap_complement()

 	built-in function

 	
 Registry.get_coin_swap_count()

 	built-in function

 	
 Registry.get_coins()

 	built-in function

 	
 Registry.get_decimals()

 	built-in function

 	
 Registry.get_fees()

 	built-in function

 	
 Registry.get_gauges()

 	built-in function

 	
 	
 Registry.get_lp_token()

 	built-in function

 	
 Registry.get_n_coins()

 	built-in function

 	
 Registry.get_parameters()

 	built-in function

 	
 Registry.get_pool_asset_type()

 	built-in function

 	
 Registry.get_pool_from_lp_token()

 	built-in function

 	
 Registry.get_pool_name()

 	built-in function

 	
 Registry.get_rates()

 	built-in function

 	
 Registry.get_underlying_balances()

 	built-in function

 	
 Registry.get_underlying_coins()

 	built-in function

 	
 Registry.get_underlying_decimals()

 	built-in function

 	
 Registry.get_virtual_price_from_lp_token()

 	built-in function

 	
 Registry.is_meta()

 	built-in function

 	
 Registry.last_updated()

 	built-in function

 	
 Registry.pool_count()

 	built-in function

 	
 Registry.pool_list()

 	built-in function

S

 	
 	
 StableSwap.A()

 	built-in function, [1]

 	
 StableSwap.A_precise()

 	built-in function

 	
 StableSwap.add_liquidity()

 	built-in function, [1], [2]

 	
 StableSwap.admin_balances()

 	built-in function

 	
 StableSwap.admin_fee()

 	built-in function, [1]

 	
 StableSwap.allowance()

 	built-in function

 	
 StableSwap.apply_new_fee()

 	built-in function

 	
 StableSwap.apply_transfer_ownership()

 	built-in function

 	
 StableSwap.approve()

 	built-in function

 	
 StableSwap.balanceOf()

 	built-in function

 	
 StableSwap.balances()

 	built-in function, [1]

 	
 StableSwap.base_cache_update()

 	built-in function

 	
 StableSwap.base_coins()

 	built-in function

 	
 StableSwap.base_pool()

 	built-in function

 	
 StableSwap.base_virtual_price()

 	built-in function

 	
 StableSwap.calc_token_amount()

 	built-in function, [1]

 	
 StableSwap.calc_withdraw_one_coin()

 	built-in function, [1]

 	
 StableSwap.coins()

 	built-in function, [1], [2]

 	
 StableSwap.commit_new_fee()

 	built-in function

 	
 StableSwap.commit_transfer_ownership()

 	built-in function

 	
 StableSwap.decimals()

 	built-in function

 	
 StableSwap.donate_admin_fees()

 	built-in function

 	
 StableSwap.exchange()

 	built-in function, [1], [2]

 	
 StableSwap.exchange_underlying()

 	built-in function, [1], [2]

 	
 StableSwap.fee()

 	built-in function, [1]

 	
 StableSwap.get_dy()

 	built-in function, [1]

 	
 StableSwap.get_dy_underlying()

 	built-in function

 	
 StableSwap.get_estimated_swap_amount()

 	built-in function

 	
 StableSwap.get_swap_from_synth_amount()

 	built-in function

 	
 StableSwap.get_swap_into_synth_amount()

 	built-in function

 	
 StableSwap.get_virtual_price()

 	built-in function, [1]

 	
 	
 StableSwap.kill_me()

 	built-in function

 	
 StableSwap.lp_token()

 	built-in function

 	
 StableSwap.name()

 	built-in function

 	
 StableSwap.owner()

 	built-in function

 	
 StableSwap.ramp_A()

 	built-in function

 	
 StableSwap.remove_liquidity()

 	built-in function, [1]

 	
 StableSwap.remove_liquidity_imbalance()

 	built-in function, [1]

 	
 StableSwap.remove_liquidity_one_coin()

 	built-in function, [1]

 	
 StableSwap.revert_new_parameters()

 	built-in function

 	
 StableSwap.revert_transfer_ownership()

 	built-in function

 	
 StableSwap.settle()

 	built-in function

 	
 StableSwap.stop_ramp_A()

 	built-in function

 	
 StableSwap.swap_from_synth()

 	built-in function

 	
 StableSwap.swap_into_synth()

 	built-in function

 	
 StableSwap.swappable_synth()

 	built-in function

 	
 StableSwap.symbol()

 	built-in function

 	
 StableSwap.synth_pools()

 	built-in function

 	
 StableSwap.token_info()

 	built-in function

 	
 StableSwap.totalSupply()

 	built-in function

 	
 StableSwap.transfer()

 	built-in function

 	
 StableSwap.transferFrom()

 	built-in function

 	
 StableSwap.underlying_coins()

 	built-in function

 	
 StableSwap.unkill_me()

 	built-in function

 	
 StableSwap.withdraw()

 	built-in function

 	
 StableSwap.withdraw_admin_fees()

 	built-in function

 	
 Swaps.exchange()

 	built-in function

 	
 Swaps.exchange_with_best_rate()

 	built-in function

 	
 Swaps.get_best_rate()

 	built-in function

 	
 Swaps.get_exchange_amount()

 	built-in function

 	
 SynthBurner.add_synths()

 	built-in function

 	
 SynthBurner.set_swap_for()

 	built-in function

U

 	
 	
 UnderlyingBurner.execute()

 	built-in function

V

 	
 	
 VotingEscrow.balanceOf()

 	built-in function

 	
 VotingEscrow.balanceOfAt()

 	built-in function

 	
 VotingEscrow.create_lock()

 	built-in function

 	
 VotingEscrow.increase_amount()

 	built-in function

 	
 VotingEscrow.increase_unlock_time()

 	built-in function

 	
 	
 VotingEscrow.locked()

 	built-in function

 	
 VotingEscrow.totalSupply()

 	built-in function

 	
 VotingEscrow.totalSupplyAt()

 	built-in function

 	
 VotingEscrow.withdraw()

 	built-in function

 _static/minus.png

_static/plus.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Curve

 		
 Protocol Overview

 		
 Overview

 		
 Pools

 		
 Plain Pools

 		
 Getting Pool Info

 		
 Making Exchanges

 		
 Adding/Removing Liquidity

 		
 Lending Pools

 		
 Getting Pool Info

 		
 Making Exchanges

 		
 Adding/Removing Liquidity

 		
 Metapools

 		
 Getting Pool Information

 		
 Making Exchanges

 		
 Admin Pool Settings

 		
 Pool Ownership

 		
 Amplification Coefficient

 		
 Trade Fees

 		
 Kill a Pool

 		
 LP Tokens

 		
 Curve Token V1

 		
 Minter Methods

 		
 Curve Token V2

 		
 Curve Token V3

 		
 Deposit Contracts

 		
 Lending Pool Deposits

 		
 Deposit Zap API (OLD)

 		
 Deposit Zap API (NEW)

 		
 Metapool Deposits

 		
 Get Deposit Zap Information

 		
 Adding/Removing Liquidity

 		
 Cross-Asset Swaps

 		
 How it Works

 		
 Settler NFTs

 		
 Front-running Considerations

 		
 Exchange API

 		
 Finding Swappable Assets

 		
 Estimating Swap Amounts

 		
 Initiating a Swap

 		
 Getting Info about an Unsettled Swap

 		
 Completing a Swap

 		
 Overview

 		
 Vote-Escrowed CRV

 		
 Implementation Details

 		
 Querying Balances, Locks and Supply

 		
 Working with Vote-Locks

 		
 Liquidity Gauges and Minting CRV

 		
 Implementation Details

 		
 CRV Inflation

 		
 Liquidity Gauges

 		
 Boosting

 		
 Gauge Weight Voting

 		
 The Gauge Controller

 		
 Gauge Types

 		
 LiquidityGauge

 		
 Querying Gauge Information

 		
 Querying User Information

 		
 Checkpoints

 		
 Deposits and Withdrawals

 		
 Killing the Gauge

 		
 LiquidityGaugeReward

 		
 Querying Reward Information

 		
 Calculating Claimable Rewards

 		
 Claiming Rewards

 		
 LiquidityGaugeV2

 		
 Querying Reward Information

 		
 Approvals and Transfers

 		
 Checking and Claiming Rewards

 		
 Setting the Rewards Contract

 		
 LiquidityGaugeV3

 		
 Querying Reward Information

 		
 Checking and Claiming Rewards

 		
 GaugeController

 		
 Querying Gauge and Type Weights

 		
 Vote-Weighting

 		
 Adding New Gauges and Types

 		
 Minter

 		
 Minting CRV

 		
 Gauges for EVM Sidechains

 		
 Implementation Details

 		
 RootChainGauge

 		
 ChildChainStreamer

 		
 RewardsOnlyGauge

 		
 RewardClaimer

 		
 Fee Collection and Distribution

 		
 Withdrawing Admin Fees

 		
 The Burn Process

 		
 LPBurner

 		
 SynthBurner

 		
 ABurner, CBurner, YBurner

 		
 MetaBurner

 		
 USDNBurner

 		
 UniswapBurner

 		
 UnderlyingBurner

 		
 Fee Distribution

 		
 Governance and Voting

 		
 Creating a Vote

 		
 Inspecting Votes

 		
 Voting

 		
 Executing a Vote

 		
 Ownership Proxies

 		
 Agents

 		
 PoolProxy

 		
 Configuring Fee Burners

 		
 Withdraing and Burning Fees

 		
 Killing Pools

 		
 Pool Ownership

 		
 Modifying Pool Parameters

 		
 GaugeProxy

 		
 Overview

 		
 The Address Provider

 		
 How it Works

 		
 View Functions

 		
 Address IDs

 		
 The Main Registry

 		
 Deployment Address

 		
 View Functions

 		
 Finding Pools

 		
 Getting Info About a Pool

 		
 Gauges

 		
 Getting Coins and Coin Swap Complements

 		
 Registry Metadata

 		
 Pool Info: Aggregated Getters

 		
 Deployment Address

 		
 View Functions

 		
 Exchanges

 		
 Deployment Address

 		
 Finding Pools and Swap Rates

 		
 Swapping Tokens

 		
 Overview

 		
 Organization

 		
 Deployer and Registry

 		
 Deploying a Pool

 		
 Limitations

 		
 Base Pools

 		
 Choosing an Amplification Coefficient

 		
 Trade fees

 		
 Finding Pools

 		
 Getting Pool Info

 		
 Coins and Coin Info

 		
 Pools

 		
 Implementation Contracts

 		
 Getting Pool Info

 		
 Making Exchanges

 		
 Adding and Removing Liquidity

 		
 Claiming Admin Fees

 		
 LP Tokens

 		
 Token Info

 		
 Balances and Allowances

 		
 Transfers and Approvals

 		
 Oracles

 		
 Time-Weighted Average Price oracles

 		
 Security

 		
 Deposit Contracts

 		
 Deployment Addresses

 		
 Calculating Expected Amounts

 		
 Adding Liquidity

 		
 Removing Liquidity

 		
 Liquidity Migrator

 		
 Migrating Liquidity between Pools

 		
 Overview

 		
 General

 		
 Commit Messages

 		
 Conventional Commits

 		
 Best Practices

 		
 Github Standard Fork and Pull Request Workflow

 		
 Creating a Fork

 		
 Keeping Your Fork Up to Date

 		
 Doing Your Work

 		
 Submitting a Pull Request

 		
 Accepting and Merging a Pull Request

 		
 Creating A New Repository

 		
 Testing

 		
 Curve Contracts

 		
 Organization

 		
 Running the tests

 		
 Fixtures

 		
 Markers

 		
 Code Style

 		
 Vyper Style Guide

 		
 Project Organization

 		
 Naming Conventions

 		
 Code Style

 		
 Python Style Guide

 		
 Linting and Pre-Commit Hooks

 		
 Naming Conventions

 		
 Code Style

 		
 Deployment Addresses

 		
 Base Pools

 		
 MetaPools

 		
 Liquidity Gauges

 		
 Curve DAO

 		
 Ownership Proxies

 		
 Aragon

 		
 Fee Burners

 		
 Pool Registry

 		
 MetaPool Factory

 		
 Implementation Contracts

 		
 Deposit Zaps

 		
 Promoted Factory Pools

 		
 Other Chains

 		
 Arbitrum

 		
 Aurora

 		
 Avalanche

 		
 Fantom

 		
 Harmony

 		
 Moonbeam

 		
 Optimism

 		
 Polygon

 		
 XDai

 		
 Glossary of Terms

